1,388 research outputs found

    Analysis-oriented two-level grammars

    Get PDF
    Summary: p. 2-3

    Advances in Spectral Learning with Applications to Text Analysis and Brain Imaging

    Get PDF
    Spectral learning algorithms are becoming increasingly popular in data-rich domains, driven in part by recent advances in large scale randomized SVD, and in spectral estimation of Hidden Markov Models. Extensions of these methods lead to statistical estimation algorithms which are not only fast, scalable, and useful on real data sets, but are also provably correct. Following this line of research, we make two contributions. First, we propose a set of spectral algorithms for text analysis and natural language processing. In particular, we propose fast and scalable spectral algorithms for learning word embeddings -- low dimensional real vectors (called Eigenwords) that capture the “meaning” of words from their context. Second, we show how similar spectral methods can be applied to analyzing brain images. State-of-the-art approaches to learning word embeddings are slow to train or lack theoretical grounding; We propose three spectral algorithms that overcome these limitations. All three algorithms harness the multi-view nature of text data i.e. the left and right context of each word, and share three characteristics: 1). They are fast to train and are scalable. 2). They have strong theoretical properties. 3). They can induce context-specific embeddings i.e. different embedding for “river bank” or “Bank of America”. \end{enumerate} They also have lower sample complexity and hence higher statistical power for rare words. We provide theory which establishes relationships between these algorithms and optimality criteria for the estimates they provide. We also perform thorough qualitative and quantitative evaluation of Eigenwords and demonstrate their superior performance over state-of-the-art approaches. Next, we turn to the task of using spectral learning methods for brain imaging data. Methods like Sparse Principal Component Analysis (SPCA), Non-negative Matrix Factorization (NMF) and Independent Component Analysis (ICA) have been used to obtain state-of-the-art accuracies in a variety of problems in machine learning. However, their usage in brain imaging, though increasing, is limited by the fact that they are used as out-of-the-box techniques and are seldom tailored to the domain specific constraints and knowledge pertaining to medical imaging, which leads to difficulties in interpretation of results. In order to address the above shortcomings, we propose Eigenanatomy (EANAT), a general framework for sparse matrix factorization. Its goal is to statistically learn the boundaries of and connections between brain regions by weighing both the data and prior neuroanatomical knowledge. Although EANAT incorporates some neuroanatomical prior knowledge in the form of connectedness and smoothness constraints, it can still be difficult for clinicians to interpret the results in specific domains where network-specific hypotheses exist. We thus extend EANAT and present a novel framework for prior-constrained sparse decomposition of matrices derived from brain imaging data, called Prior Based Eigenanatomy (p-Eigen). We formulate our solution in terms of a prior-constrained l1 penalized (sparse) principal component analysis. Experimental evaluation confirms that p-Eigen extracts biologically-relevant, patient-specific functional parcels and that it significantly aids classification of Mild Cognitive Impairment when compared to state-of-the-art competing approaches

    Verb-second as a reconstruction phenomenon

    Get PDF
    This investigation of V2-movement addresses the question which role the lexical content of the moved element plays during sentence processing. It draws on original theoretical arguments, empirical data and results from psycholinguistic experiments. The main finding is that the lexical content of the V2-verb is interpreted only at the end of the clause, i.e. at the base position of the finite verb

    Developmental pathways to autism: a review of prospective studies of infants at risk

    Get PDF
    Autism Spectrum Disorders (ASDs) are neurodevelopmental disorders characterized by impairments in social interaction and communication, and the presence of restrictive and repetitive behaviors. Symptoms of ASD likely emerge from a complex interaction between pre-existing neurodevelopmental vulnerabilities and the child's environment, modified by compensatory skills and protective factors. Prospective studies of infants at high familial risk for ASD (who have an older sibling with a diagnosis) are beginning to characterize these developmental pathways to the emergence of clinical symptoms. Here, we review the range of behavioral and neurocognitive markers for later ASD that have been identified in high-risk infants in the first years of life. We discuss theoretical implications of emerging patterns, and identify key directions for future work, including potential resolutions to several methodological challenges for the field. Mapping how ASD unfolds from birth is critical to our understanding of the developmental mechanisms underlying this disorder. A more nuanced understanding of developmental pathways to ASD will help us not only to identify children who need early intervention, but also to improve the range of interventions available to them

    Verb-second as a reconstruction phenomenon

    Get PDF
    This investigation of V2-movement addresses the question which role the lexical content of the moved element plays during sentence processing. It draws on original theoretical arguments, empirical data and results from psycholinguistic experiments. The main finding is that the lexical content of the V2-verb is interpreted only at the end of the clause, i.e. at the base position of the finite verb

    Network Traffic Analysis Using Stochastic Grammars

    Get PDF
    Network traffic analysis is widely used to infer information from Internet traffic. This is possible even if the traffic is encrypted. Previous work uses traffic characteristics, such as port numbers, packet sizes, and frequency, without looking for more subtle patterns in the network traffic. In this work, we use stochastic grammars, hidden Markov models (HMMs) and probabilistic context-free grammars (PCFGs), as pattern recognition tools for traffic analysis. HMMs are widely used for pattern recognition and detection. We use a HMM inference approach. With inferred HMMs, we use confidence intervals (CI) to detect if a data sequence matches the HMM. To compare HMMs, we define a normalized Markov metric. A statistical test is used to determine model equivalence. Our metric systematically removes the least likely events from both HMMs until the remaining models are statistically equivalent. This defines the distance between models. We extend the use of HMMs to PCFGs, which have more expressive power. We estimate PCFG production probabilities from data. A statistical test is used for detection. We present three applications of HMM and PCFG detection to network traffic analysis. First, we infer the presence of protocol tunneling through Tor (the onion router) anonymization network. The Markov metric quantifies the similarity of network traffic HMMs in Tor to identify the protocol. It also measures communication noise in Tor network. We use HMMs to detect centralized botnet traffic. We infer HMMs from botnet traffic data and detect botnet infections. Experimental results show that HMMs can accurately detect Zeus botnet traffic. To hide their locations better, newer botnets have P2P control structures. Hierarchical P2P botnets contain recursive and hierarchical patterns. We use PCFGs to detect P2P botnet traffic. Experimentation on real-world traffic data shows that PCFGs can accurately differentiate between P2P botnet traffic and normal Internet traffic

    Efficient combinator parsing for natural-language.

    Get PDF
    corecore