475,131 research outputs found

    Learning to Rank Academic Experts in the DBLP Dataset

    Full text link
    Expert finding is an information retrieval task that is concerned with the search for the most knowledgeable people with respect to a specific topic, and the search is based on documents that describe people's activities. The task involves taking a user query as input and returning a list of people who are sorted by their level of expertise with respect to the user query. Despite recent interest in the area, the current state-of-the-art techniques lack in principled approaches for optimally combining different sources of evidence. This article proposes two frameworks for combining multiple estimators of expertise. These estimators are derived from textual contents, from graph-structure of the citation patterns for the community of experts, and from profile information about the experts. More specifically, this article explores the use of supervised learning to rank methods, as well as rank aggregation approaches, for combing all of the estimators of expertise. Several supervised learning algorithms, which are representative of the pointwise, pairwise and listwise approaches, were tested, and various state-of-the-art data fusion techniques were also explored for the rank aggregation framework. Experiments that were performed on a dataset of academic publications from the Computer Science domain attest the adequacy of the proposed approaches.Comment: Expert Systems, 2013. arXiv admin note: text overlap with arXiv:1302.041

    Rich environments for active learning: a definition

    Get PDF
    Rich Environments for Active Learning, or REALs, are comprehensive instructional systems that evolve from and are consistent with constructivist philosophies and theories. To embody a constructivist view of learning, REALs: promote study and investigation within authentic contexts; encourage the growth of student responsibility, initiative, decision making, and intentional learning; cultivate collaboration among students and teachers; utilize dynamic, interdisciplinary, generative learning activities that promote higher-order thinking processes to help students develop rich and complex knowledge structures; and assess student progress in content and learning-to-learn within authentic contexts using realistic tasks and performances. REALs provide learning activities that engage students in a continuous collaborative process of building and reshaping understanding as a natural consequence of their experiences and interactions within learning environments that authentically reflect the world around them. In this way, REALs are a response to educational practices that promote the development of inert knowledge, such as conventional teacher-to-student knowledge-transfer activities. In this article, we describe and organize the shared elements of REALs, including the theoretical foundations and instructional strategies to provide a common ground for discussion. We compare existing assumptions underlying education with new assumptions that promote problem-solving and higher-level thinking. Next, we examine the theoretical foundation that supports these new assumptions. Finally, we describe how REALs promote these new assumptions within a constructivist framework, defining each REAL attribute and providing supporting examples of REAL strategies in action

    Data-Driven Computing in Dynamics

    Get PDF
    We formulate extensions to Data Driven Computing for both distance minimizing and entropy maximizing schemes to incorporate time integration. Previous works focused on formulating both types of solvers in the presence of static equilibrium constraints. Here formulations assign data points a variable relevance depending on distance to the solution and on maximum-entropy weighting, with distance minimizing schemes discussed as a special case. The resulting schemes consist of the minimization of a suitably-defined free energy over phase space subject to compatibility and a time-discretized momentum conservation constraint. The present selected numerical tests that establish the convergence properties of both types of Data Driven solvers and solutions.Comment: arXiv admin note: substantial text overlap with arXiv:1702.0157

    Considering Convergence: A Policy Dialogue About Behavioral Genetics, Neuroscience, and Law

    Get PDF
    Garland and Frankel issue a call for scientists, lawyers, courts and lawmakers to begin a critical dialogue about the implications of scientific discoveries and technological advances in criminal law, behavioral genetics and neuroscience

    Boundary Objects and their Use in Agile Systems Engineering

    Full text link
    Agile methods are increasingly introduced in automotive companies in the attempt to become more efficient and flexible in the system development. The adoption of agile practices influences communication between stakeholders, but also makes companies rethink the management of artifacts and documentation like requirements, safety compliance documents, and architecture models. Practitioners aim to reduce irrelevant documentation, but face a lack of guidance to determine what artifacts are needed and how they should be managed. This paper presents artifacts, challenges, guidelines, and practices for the continuous management of systems engineering artifacts in automotive based on a theoretical and empirical understanding of the topic. In collaboration with 53 practitioners from six automotive companies, we conducted a design-science study involving interviews, a questionnaire, focus groups, and practical data analysis of a systems engineering tool. The guidelines suggest the distinction between artifacts that are shared among different actors in a company (boundary objects) and those that are used within a team (locally relevant artifacts). We propose an analysis approach to identify boundary objects and three practices to manage systems engineering artifacts in industry
    • …
    corecore