1,052 research outputs found

    Computational Arithmetic Geometry I: Sentences Nearly in the Polynomial Hierarchy

    Get PDF
    We consider the average-case complexity of some otherwise undecidable or open Diophantine problems. More precisely, consider the following: (I) Given a polynomial f in Z[v,x,y], decide the sentence \exists v \forall x \exists y f(v,x,y)=0, with all three quantifiers ranging over N (or Z). (II) Given polynomials f_1,...,f_m in Z[x_1,...,x_n] with m>=n, decide if there is a rational solution to f_1=...=f_m=0. We show that, for almost all inputs, problem (I) can be done within coNP. The decidability of problem (I), over N and Z, was previously unknown. We also show that the Generalized Riemann Hypothesis (GRH) implies that, for almost all inputs, problem (II) can be done via within the complexity class PP^{NP^NP}, i.e., within the third level of the polynomial hierarchy. The decidability of problem (II), even in the case m=n=2, remains open in general. Along the way, we prove results relating polynomial system solving over C, Q, and Z/pZ. We also prove a result on Galois groups associated to sparse polynomial systems which may be of independent interest. A practical observation is that the aforementioned Diophantine problems should perhaps be avoided in the construction of crypto-systems.Comment: Slight revision of final journal version of an extended abstract which appeared in STOC 1999. This version includes significant corrections and improvements to various asymptotic bounds. Needs cjour.cls to compil

    Solvable (and unsolvable) cases of the decision problem for fragments of analysis

    Get PDF
    We survey two series of results concerning the decidability of fragments of Tarksi’s elementary algebra extended with one-argument functions which meet significant properties such as continuity, differentiability, or analyticity. One series of results regards the initial levels of a hierarchy of prenex sentences involving a single function symbol: in a number of cases, the decision problem for these sentences was solved in the positive by H. Friedman and A. Seress, who also proved that beyond two quantifier alternations decidability gets lost. The second series of results refers to merely existential sentences, but it brings into play an arbitrary number of functions, which are requested to be, over specified closed intervals, monotone increasing or decreasing, concave, or convex; any two such functions can be compared, and in one case, where each function is supposed to own continuous first derivative, their derivatives can be compared with real constants
    • …
    corecore