3,237 research outputs found

    On Second-Order Monadic Monoidal and Groupoidal Quantifiers

    Get PDF
    We study logics defined in terms of second-order monadic monoidal and groupoidal quantifiers. These are generalized quantifiers defined by monoid and groupoid word-problems, equivalently, by regular and context-free languages. We give a computational classification of the expressive power of these logics over strings with varying built-in predicates. In particular, we show that ATIME(n) can be logically characterized in terms of second-order monadic monoidal quantifiers

    Expansions of MSO by cardinality relations

    Full text link
    We study expansions of the Weak Monadic Second Order theory of (N,<) by cardinality relations, which are predicates R(X1,...,Xn) whose truth value depends only on the cardinality of the sets X1, ...,Xn. We first provide a (definable) criterion for definability of a cardinality relation in (N,<), and use it to prove that for every cardinality relation R which is not definable in (N,<), there exists a unary cardinality relation which is definable in (N,<,R) and not in (N,<). These results resemble Muchnik and Michaux-Villemaire theorems for Presburger Arithmetic. We prove then that + and x are definable in (N,<,R) for every cardinality relation R which is not definable in (N,<). This implies undecidability of the WMSO theory of (N,<,R). We also consider the related satisfiability problem for the class of finite orderings, namely the question whether an MSO sentence in the language {<,R} admits a finite model M where < is interpreted as a linear ordering, and R as the restriction of some (fixed) cardinality relation to the domain of M. We prove that this problem is undecidable for every cardinality relation R which is not definable in (N,<).Comment: to appear in LMC

    An Application of the Feferman-Vaught Theorem to Automata and Logics for<br> Words over an Infinite Alphabet

    Full text link
    We show that a special case of the Feferman-Vaught composition theorem gives rise to a natural notion of automata for finite words over an infinite alphabet, with good closure and decidability properties, as well as several logical characterizations. We also consider a slight extension of the Feferman-Vaught formalism which allows to express more relations between component values (such as equality), and prove related decidability results. From this result we get new classes of decidable logics for words over an infinite alphabet.Comment: 24 page

    The Church Synthesis Problem with Parameters

    Full text link
    For a two-variable formula &psi;(X,Y) of Monadic Logic of Order (MLO) the Church Synthesis Problem concerns the existence and construction of an operator Y=F(X) such that &psi;(X,F(X)) is universally valid over Nat. B\"{u}chi and Landweber proved that the Church synthesis problem is decidable; moreover, they showed that if there is an operator F that solves the Church Synthesis Problem, then it can also be solved by an operator defined by a finite state automaton or equivalently by an MLO formula. We investigate a parameterized version of the Church synthesis problem. In this version &psi; might contain as a parameter a unary predicate P. We show that the Church synthesis problem for P is computable if and only if the monadic theory of is decidable. We prove that the B\"{u}chi-Landweber theorem can be extended only to ultimately periodic parameters. However, the MLO-definability part of the B\"{u}chi-Landweber theorem holds for the parameterized version of the Church synthesis problem

    The First-Order Theory of Sets with Cardinality Constraints is Decidable

    Full text link
    We show that the decidability of the first-order theory of the language that combines Boolean algebras of sets of uninterpreted elements with Presburger arithmetic operations. We thereby disprove a recent conjecture that this theory is undecidable. Our language allows relating the cardinalities of sets to the values of integer variables, and can distinguish finite and infinite sets. We use quantifier elimination to show the decidability and obtain an elementary upper bound on the complexity. Precise program analyses can use our decidability result to verify representation invariants of data structures that use an integer field to represent the number of stored elements.Comment: 18 page

    Advances and applications of automata on words and trees : abstracts collection

    Get PDF
    From 12.12.2010 to 17.12.2010, the Dagstuhl Seminar 10501 "Advances and Applications of Automata on Words and Trees" was held in Schloss Dagstuhl - Leibniz Center for Informatics. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar topics and goals in general. Links to extended abstracts or full papers are provided, if available
    • …
    corecore