651 research outputs found

    A walk in the noncommutative garden

    Get PDF
    This text is written for the volume of the school/conference "Noncommutative Geometry 2005" held at IPM Tehran. It gives a survey of methods and results in noncommutative geometry, based on a discussion of significant examples of noncommutative spaces in geometry, number theory, and physics. The paper also contains an outline (the ``Tehran program'') of ongoing joint work with Consani on the noncommutative geometry of the adeles class space and its relation to number theoretic questions.Comment: 106 pages, LaTeX, 23 figure

    Spin Foams and Noncommutative Geometry

    Get PDF
    We extend the formalism of embedded spin networks and spin foams to include topological data that encode the underlying three-manifold or four-manifold as a branched cover. These data are expressed as monodromies, in a way similar to the encoding of the gravitational field via holonomies. We then describe convolution algebras of spin networks and spin foams, based on the different ways in which the same topology can be realized as a branched covering via covering moves, and on possible composition operations on spin foams. We illustrate the case of the groupoid algebra of the equivalence relation determined by covering moves and a 2-semigroupoid algebra arising from a 2-category of spin foams with composition operations corresponding to a fibered product of the branched coverings and the gluing of cobordisms. The spin foam amplitudes then give rise to dynamical flows on these algebras, and the existence of low temperature equilibrium states of Gibbs form is related to questions on the existence of topological invariants of embedded graphs and embedded two-complexes with given properties. We end by sketching a possible approach to combining the spin network and spin foam formalism with matter within the framework of spectral triples in noncommutative geometry.Comment: 48 pages LaTeX, 30 PDF figure

    Logic and operator algebras

    Full text link
    The most recent wave of applications of logic to operator algebras is a young and rapidly developing field. This is a snapshot of the current state of the art.Comment: A minor chang

    Noncommutative geometry and motives: the thermodynamics of endomotives

    Get PDF
    We combine aspects of the theory of motives in algebraic geometry with noncommutative geometry and the classification of factors to obtain a cohomological interpretation of the spectral realization of zeros of LL-functions. The analogue in characteristic zero of the action of the Frobenius on l-adic cohomology is the action of the scaling group on the cyclic homology of the cokernel (in a suitable category of motives) of a restriction map of noncommutative spaces. The latter is obtained through the thermodynamics of the quantum statistical system associated to an endomotive (a noncommutative generalization of Artin motives). Semigroups of endomorphisms of algebraic varieties give rise canonically to such endomotives, with an action of the absolute Galois group. The semigroup of endomorphisms of the multiplicative group yields the Bost-Connes system, from which one obtains, through the above procedure, the desired cohomological interpretation of the zeros of the Riemann zeta function. In the last section we also give a Lefschetz formula for the archimedean local L-factors of arithmetic varieties.Comment: 52 pages, amslatex, 1 eps figure, v2: final version to appea

    Arithmetic Spacetime Geometry from String Theory

    Full text link
    An arithmetic framework to string compactification is described. The approach is exemplified by formulating a strategy that allows to construct geometric compactifications from exactly solvable theories at c=3c=3. It is shown that the conformal field theoretic characters can be derived from the geometry of spacetime, and that the geometry is uniquely determined by the two-dimensional field theory on the world sheet. The modular forms that appear in these constructions admit complex multiplication, and allow an interpretation as generalized McKay-Thompson series associated to the Mathieu and Conway groups. This leads to a string motivated notion of arithmetic moonshine.Comment: 36 page

    Crystals, instantons and quantum toric geometry

    Full text link
    We describe the statistical mechanics of a melting crystal in three dimensions and its relation to a diverse range of models arising in combinatorics, algebraic geometry, integrable systems, low-dimensional gauge theories, topological string theory and quantum gravity. Its partition function can be computed by enumerating the contributions from noncommutative instantons to a six-dimensional cohomological gauge theory, which yields a dynamical realization of the crystal as a discretization of spacetime at the Planck scale. We describe analogous relations between a melting crystal model in two dimensions and N=4 supersymmetric Yang-Mills theory in four dimensions. We elaborate on some mathematical details of the construction of the quantum geometry which combines methods from toric geometry, isospectral deformation theory and noncommutative geometry in braided monoidal categories. In particular, we relate the construction of noncommutative instantons to deformed ADHM data, torsion-free modules and a noncommutative twistor correspondence.Comment: 33 pages, 5 figures; Contribution to the proceedings of "Geometry and Physics in Cracow", Jagiellonian University, Cracow, Poland, September 21-25, 2010. To be published in Acta Physica Polonica Proceedings Supplemen
    corecore