101 research outputs found

    A Noise-Robust Method with Smoothed \ell_1/\ell_2 Regularization for Sparse Moving-Source Mapping

    Full text link
    The method described here performs blind deconvolution of the beamforming output in the frequency domain. To provide accurate blind deconvolution, sparsity priors are introduced with a smooth \ell_1/\ell_2 regularization term. As the mean of the noise in the power spectrum domain is dependent on its variance in the time domain, the proposed method includes a variance estimation step, which allows more robust blind deconvolution. Validation of the method on both simulated and real data, and of its performance, are compared with two well-known methods from the literature: the deconvolution approach for the mapping of acoustic sources, and sound density modeling

    Detailed population balance modelling of industrial titania synthesis

    Get PDF
    This thesis presents an efficient and robust detailed population balance framework for simulating aerosol synthesis of structured particles using a stochastic method. This is developed in the context of the industrial titania (TiO2) process to enable extensive numerical characterisation of the pigmentary product. A reactor network model is used to provide a modular treatment of the reactor and account for key features, including multiple reactant injections, and tubular reaction and cooling zones. This approach simplifies the flow field in order to focus computational effort on resolving particle structure using a high-dimensional particle model and its modularity offers flexibility to investigate different configurations. Initial results are presented using a pre-defined temperature profile in the network, and the particulate product is characterised by its property distributions. Numerical performance is studied, highlighting the high computational cost of simulating strong phase-coupling, fast process rates, and broad particle size distributions. A novel hybrid particle model is developed to address these challenges. The hybrid particle model employs a univariate description of small particles and switches to a detailed particle model to resolve morphology of more complicated, aggregate particles. New simulation algorithms are presented to manage interactions between particles of each type. The hybrid model is shown to improve efficiency (resolution versus computational cost) and robustness (sensitivity to numerical parameters), while generating the same solutions and convergence behaviour as earlier models. The reactor model is extended, utilizing the superior numerical performance of the new hybrid particle model to enable inclusion of a system energy balance for more accurate study of a broad range of process conditions, and a more sophisticated particle model to resolve particle geometry. These contributions facilitate the study of particle structure and its sensitivity to reactor design and operational choices, providing insight into how operation affects characteristics of the particles and allowing direct comparison with experimental images of the pigmentary product.This research was supported by the National Research Foundation, Prime Minister's Office, Singapore under its Campus for Research Excellence and Technological Enterprise (CREATE) programme, and by Venator

    Efficient LMI-based quadratic stabilization of interval LPV systems with noisy parameter measures

    Get PDF
    none2openL. IETTO; Valentina OrsiniIetto, Leopoldo; Orsini, Valentin

    A fast design technique for robust industrial controllers

    Get PDF
    This paper provides a new fast design method for robust industrial controllers via majorant systems in the frequency domain. The proposed methodology allows to establish several fast design techniques for a broad class of industrial controllers of plants with internal and/or external delays, parametric and/or structural uncertainties, and subject to disturbances, when an analytical model of the plant or data acquired from simple experimental tests are available. The provided design and control techniques are more general with respect to the Ziegler-Nichols ones and their numerous variants, which, in some cases, do not guarantee the control system stability. The used key idea consists in increasing the frequency response of the process to be controlled with the frequency response of a simpler system, also of order greater than one, with external delay, which allows designing, using simple formulas, controllers of PI, PID, PIDR, PI2, PI2D, PI2DR, PI2D2, and PI2D2R types. The designed controllers always guarantee stability margins larger than those of appropriate reference systems. Therefore, good performance of robustness of the stability and tracking precision of smooth references, with respect to parametric and/or structural uncertainties and/or smooth disturbances, are always guaranteed. The stated general methodology and various performance comparisons, also about the tracking precision of references with bounded first or second derivative, are illustrated and validated in several case studies, experimentally too

    Animating the development of Social Networks over time using a dynamic extension of multidimensional scaling

    Get PDF
    The animation of network visualizations poses technical and theoretical challenges. Rather stable patterns are required before the mental map enables a user to make inferences over time. In order to enhance stability, we developed an extension of stress-minimization with developments over time. This dynamic layouter is no longer based on linear interpolation between independent static visualizations, but change over time is used as a parameter in the optimization. Because of our focus on structural change versus stability the attention is shifted from the relational graph to the latent eigenvectors of matrices. The approach is illustrated with animations for the journal citation environments of Social Networks, the (co-)author networks in the carrying community of this journal, and the topical development using relations among its title words. Our results are also compared with animations based on PajekToSVGAnim and SoNIA

    Coherence in scale-free networks of chaotic maps

    Get PDF
    We study fully synchronized states in scale-free networks of chaotic logistic maps as a function of both dynamical and topological parameters. Three different network topologies are considered: (i) random scale-free topology, (ii) deterministic pseudo-fractal scale-free network, and (iii) Apollonian network. For the random scale-free topology we find a coupling strength threshold beyond which full synchronization is attained. This threshold scales as k−μk^{-\mu}, where kk is the outgoing connectivity and μ\mu depends on the local nonlinearity. For deterministic scale-free networks coherence is observed only when the coupling strength is proportional to the neighbor connectivity. We show that the transition to coherence is of first-order and study the role of the most connected nodes in the collective dynamics of oscillators in scale-free networks.Comment: 9 pages, 8 figure

    An L1 Penalty Method for General Obstacle Problems

    Get PDF
    We construct an efficient numerical scheme for solving obstacle problems in divergence form. The numerical method is based on a reformulation of the obstacle in terms of an L1-like penalty on the variational problem. The reformulation is an exact regularizer in the sense that for large (but finite) penalty parameter, we recover the exact solution. Our formulation is applied to classical elliptic obstacle problems as well as some related free boundary problems, for example the two-phase membrane problem and the Hele-Shaw model. One advantage of the proposed method is that the free boundary inherent in the obstacle problem arises naturally in our energy minimization without any need for problem specific or complicated discretization. In addition, our scheme also works for nonlinear variational inequalities arising from convex minimization problems.Comment: 20 pages, 18 figure
    • …
    corecore