15,744 research outputs found

    Optimal Staged Self-Assembly of General Shapes

    Get PDF
    We analyze the number of tile types tt, bins bb, and stages necessary to assemble n×nn \times n squares and scaled shapes in the staged tile assembly model. For n×nn \times n squares, we prove O(logntbtlogtb2+loglogblogt)\mathcal{O}(\frac{\log{n} - tb - t\log t}{b^2} + \frac{\log \log b}{\log t}) stages suffice and Ω(logntbtlogtb2)\Omega(\frac{\log{n} - tb - t\log t}{b^2}) are necessary for almost all nn. For shapes SS with Kolmogorov complexity K(S)K(S), we prove O(K(S)tbtlogtb2+loglogblogt)\mathcal{O}(\frac{K(S) - tb - t\log t}{b^2} + \frac{\log \log b}{\log t}) stages suffice and Ω(K(S)tbtlogtb2)\Omega(\frac{K(S) - tb - t\log t}{b^2}) are necessary to assemble a scaled version of SS, for almost all SS. We obtain similarly tight bounds when the more powerful flexible glues are permitted.Comment: Abstract version appeared in ESA 201

    Elliptic logarithms, diophantine approximation and the Birch and Swinnerton-Dyer conjecture

    Get PDF
    Most, if not all, unconditional results towards the abc-conjecture rely ultimately on classical Baker's method. In this article, we turn our attention to its elliptic analogue. Using the elliptic Baker's method, we have recently obtained a new upper bound for the height of the S-integral points on an elliptic curve. This bound depends on some parameters related to the Mordell-Weil group of the curve. We deduce here a bound relying on the conjecture of Birch and Swinnerton-Dyer, involving classical, more manageable quantities. We then study which abc-type inequality over number fields could be derived from this elliptic approach.Comment: 20 pages. Some changes, the most important being on Conjecture 3.2, three references added ([Mas75], [MB90] and [Yu94]) and one reference updated [BS12]. Accepted in Bull. Brazil. Mat. So

    Exploring pure quantum states with maximally mixed reductions

    Full text link
    We investigate multipartite entanglement for composite quantum systems in a pure state. Using the generalized Bloch representation for n-qubit states, we express the condition that all k-qubit reductions of the whole system are maximally mixed, reflecting maximum bipartite entanglement across all k vs. n-k bipartitions. As a special case, we examine the class of balanced pure states, which are constructed from a subset of the Pauli group P_n that is isomorphic to Z_2^n. This makes a connection with the theory of quantum error-correcting codes and provides bounds on the largest allowed k for fixed n. In particular, the ratio k/n can be lower and upper bounded in the asymptotic regime, implying that there must exist multipartite entangled states with at least k=0.189 n when nn\to \infty. We also analyze symmetric states as another natural class of states with high multipartite entanglement and prove that, surprisingly, they cannot have all maximally mixed k-qubit reductions with k>1. Thus, measured through bipartite entanglement across all bipartitions, symmetric states cannot exhibit large entanglement. However, we show that the permutation symmetry only constrains some components of the generalized Bloch vector, so that very specific patterns in this vector may be allowed even though k>1 is forbidden. This is illustrated numerically for a few symmetric states that maximize geometric entanglement, revealing some interesting structures.Comment: 10 pages, 2 figure

    On the number of tetrahedra with minimum, unit, and distinct volumes in three-space

    Full text link
    We formulate and give partial answers to several combinatorial problems on volumes of simplices determined by nn points in 3-space, and in general in dd dimensions. (i) The number of tetrahedra of minimum (nonzero) volume spanned by nn points in \RR^3 is at most 2/3n3O(n2){2/3}n^3-O(n^2), and there are point sets for which this number is 3/16n3O(n2){3/16}n^3-O(n^2). We also present an O(n3)O(n^3) time algorithm for reporting all tetrahedra of minimum nonzero volume, and thereby extend an algorithm of Edelsbrunner, O'Rourke, and Seidel. In general, for every k,d\in \NN, 1kd1\leq k \leq d, the maximum number of kk-dimensional simplices of minimum (nonzero) volume spanned by nn points in \RR^d is Θ(nk)\Theta(n^k). (ii) The number of unit-volume tetrahedra determined by nn points in \RR^3 is O(n7/2)O(n^{7/2}), and there are point sets for which this number is Ω(n3loglogn)\Omega(n^3 \log \log{n}). (iii) For every d\in \NN, the minimum number of distinct volumes of all full-dimensional simplices determined by nn points in \RR^d, not all on a hyperplane, is Θ(n)\Theta(n).Comment: 19 pages, 3 figures, a preliminary version has appeard in proceedings of the ACM-SIAM Symposium on Discrete Algorithms, 200

    Bounding sequence extremal functions with formations

    Get PDF
    An (r,s)(r, s)-formation is a concatenation of ss permutations of rr letters. If uu is a sequence with rr distinct letters, then let Ex(u,n)\mathit{Ex}(u, n) be the maximum length of any rr-sparse sequence with nn distinct letters which has no subsequence isomorphic to uu. For every sequence uu define fw(u)\mathit{fw}(u), the formation width of uu, to be the minimum ss for which there exists rr such that there is a subsequence isomorphic to uu in every (r,s)(r, s)-formation. We use fw(u)\mathit{fw}(u) to prove upper bounds on Ex(u,n)\mathit{Ex}(u, n) for sequences uu such that uu contains an alternation with the same formation width as uu. We generalize Nivasch's bounds on Ex((ab)t,n)\mathit{Ex}((ab)^{t}, n) by showing that fw((12l)t)=2t1\mathit{fw}((12 \ldots l)^{t})=2t-1 and Ex((12l)t,n)=n21(t2)!α(n)t2±O(α(n)t3)\mathit{Ex}((12\ldots l)^{t}, n) =n2^{\frac{1}{(t-2)!}\alpha(n)^{t-2}\pm O(\alpha(n)^{t-3})} for every l2l \geq 2 and t3t\geq 3, such that α(n)\alpha(n) denotes the inverse Ackermann function. Upper bounds on Ex((12l)t,n)\mathit{Ex}((12 \ldots l)^{t} , n) have been used in other papers to bound the maximum number of edges in kk-quasiplanar graphs on nn vertices with no pair of edges intersecting in more than O(1)O(1) points. If uu is any sequence of the form avavaa v a v' a such that aa is a letter, vv is a nonempty sequence excluding aa with no repeated letters and vv' is obtained from vv by only moving the first letter of vv to another place in vv, then we show that fw(u)=4\mathit{fw}(u)=4 and Ex(u,n)=Θ(nα(n))\mathit{Ex}(u, n) =\Theta(n\alpha(n)). Furthermore we prove that fw(abc(acb)t)=2t+1\mathit{fw}(abc(acb)^{t})=2t+1 and Ex(abc(acb)t,n)=n21(t1)!α(n)t1±O(α(n)t2)\mathit{Ex}(abc(acb)^{t}, n) = n2^{\frac{1}{(t-1)!}\alpha(n)^{t-1}\pm O(\alpha(n)^{t-2})} for every t2t\geq 2.Comment: 25 page
    corecore