4,379 research outputs found

    Introduction to PT-Symmetric Quantum Theory

    Full text link
    In most introductory courses on quantum mechanics one is taught that the Hamiltonian operator must be Hermitian in order that the energy levels be real and that the theory be unitary (probability conserving). To express the Hermiticity of a Hamiltonian, one writes H=H†H=H^\dagger, where the symbol †\dagger denotes the usual Dirac Hermitian conjugation; that is, transpose and complex conjugate. In the past few years it has been recognized that the requirement of Hermiticity, which is often stated as an axiom of quantum mechanics, may be replaced by the less mathematical and more physical requirement of space-time reflection symmetry (PT symmetry) without losing any of the essential physical features of quantum mechanics. Theories defined by non-Hermitian PT-symmetric Hamiltonians exhibit strange and unexpected properties at the classical as well as at the quantum level. This paper explains how the requirement of Hermiticity can be evaded and discusses the properties of some non-Hermitian PT-symmetric quantum theories

    Collective stability of networks of winner-take-all circuits

    Full text link
    The neocortex has a remarkably uniform neuronal organization, suggesting that common principles of processing are employed throughout its extent. In particular, the patterns of connectivity observed in the superficial layers of the visual cortex are consistent with the recurrent excitation and inhibitory feedback required for cooperative-competitive circuits such as the soft winner-take-all (WTA). WTA circuits offer interesting computational properties such as selective amplification, signal restoration, and decision making. But, these properties depend on the signal gain derived from positive feedback, and so there is a critical trade-off between providing feedback strong enough to support the sophisticated computations, while maintaining overall circuit stability. We consider the question of how to reason about stability in very large distributed networks of such circuits. We approach this problem by approximating the regular cortical architecture as many interconnected cooperative-competitive modules. We demonstrate that by properly understanding the behavior of this small computational module, one can reason over the stability and convergence of very large networks composed of these modules. We obtain parameter ranges in which the WTA circuit operates in a high-gain regime, is stable, and can be aggregated arbitrarily to form large stable networks. We use nonlinear Contraction Theory to establish conditions for stability in the fully nonlinear case, and verify these solutions using numerical simulations. The derived bounds allow modes of operation in which the WTA network is multi-stable and exhibits state-dependent persistent activities. Our approach is sufficiently general to reason systematically about the stability of any network, biological or technological, composed of networks of small modules that express competition through shared inhibition.Comment: 7 Figure

    A Coherent Ising Machine Based On Degenerate Optical Parametric Oscillators

    Get PDF
    A degenerate optical parametric oscillator network is proposed to solve the NP-hard problem of finding a ground state of the Ising model. The underlying operating mechanism originates from the bistable output phase of each oscillator and the inherent preference of the network in selecting oscillation modes with the minimum photon decay rate. Computational experiments are performed on all instances reducible to the NP-hard MAX-CUT problems on cubic graphs of order up to 20. The numerical results reasonably suggest the effectiveness of the proposed network.Comment: 18 pages, 6 figure

    Pseudo-Hermiticity of an Exactly Solvable Two-Dimensional Model

    Full text link
    We study a two-dimensional exactly solvable non-Hermitian PT−PT-non-symmetric quantum model with real spectrum, which is not amenable to separation of variables, by supersymmetrical methods. Here we focus attention on the property of pseudo-Hermiticity, biorthogonal expansion and pseudo-metric operator. To our knowledge this is the first time that pseudo-Hermiticity is realized explicitly for a nontrivial two-dimensional case. It is shown that the Hamiltonian of the model is not diagonalizable.Comment: 14 page

    The algebraic criteria for the stability of control systems

    Get PDF
    This paper critically examines the standard algebraic criteria for the stability of linear control systems and their proofs, reveals important previously unnoticed connections, and presents new representations. Algebraic stability criteria have also acquired significance for stability studies of non-linear differential equation systems by the Krylov-Bogoljubov-Magnus Method, and allow realization conditions to be determined for classes of broken rational functions as frequency characteristics of electrical network

    Complexified coherent states and quantum evolution with non-Hermitian Hamiltonians

    Full text link
    The complex geometry underlying the Schr\"odinger dynamics of coherent states for non-Hermitian Hamiltonians is investigated. In particular two seemingly contradictory approaches are compared: (i) a complex WKB formalism, for which the centres of coherent states naturally evolve along complex trajectories, which leads to a class of complexified coherent states; (ii) the investigation of the dynamical equations for the real expectation values of position and momentum, for which an Ehrenfest theorem has been derived in a previous paper, yielding real but non-Hamiltonian classical dynamics on phase space for the real centres of coherent states. Both approaches become exact for quadratic Hamiltonians. The apparent contradiction is resolved building on an observation by Huber, Heller and Littlejohn, that complexified coherent states are equivalent if their centres lie on a specific complex Lagrangian manifold. A rich underlying complex symplectic geometry is unravelled. In particular a natural complex structure is identified that defines a projection from complex to real phase space, mapping complexified coherent states to their real equivalents.Comment: 18 pages, small improvements made, similar to published versio
    • …
    corecore