7,382 research outputs found

    Spectral rigidity of automorphic orbits in free groups

    Full text link
    It is well-known that a point T∈cvNT\in cv_N in the (unprojectivized) Culler-Vogtmann Outer space cvNcv_N is uniquely determined by its \emph{translation length function} ∣∣.∣∣T:FN→R||.||_T:F_N\to\mathbb R. A subset SS of a free group FNF_N is called \emph{spectrally rigid} if, whenever T,T′∈cvNT,T'\in cv_N are such that ∣∣g∣∣T=∣∣g∣∣T′||g||_T=||g||_{T'} for every g∈Sg\in S then T=T′T=T' in cvNcv_N. By contrast to the similar questions for the Teichm\"uller space, it is known that for N≥2N\ge 2 there does not exist a finite spectrally rigid subset of FNF_N. In this paper we prove that for N≥3N\ge 3 if H≤Aut(FN)H\le Aut(F_N) is a subgroup that projects to an infinite normal subgroup in Out(FN)Out(F_N) then the HH-orbit of an arbitrary nontrivial element g∈FNg\in F_N is spectrally rigid. We also establish a similar statement for F2=F(a,b)F_2=F(a,b), provided that g∈F2g\in F_2 is not conjugate to a power of [a,b][a,b]. We also include an appended corrigendum which gives a corrected proof of Lemma 5.1 about the existence of a fully irreducible element in an infinite normal subgroup of of Out(FN)Out(F_N). Our original proof of Lemma 5.1 relied on a subgroup classification result of Handel-Mosher, originally stated by Handel-Mosher for arbitrary subgroups H≤Out(FN)H\le Out(F_N). After our paper was published, it turned out that the proof of the Handel-Mosher subgroup classification theorem needs the assumption that HH be finitely generated. The corrigendum provides an alternative proof of Lemma~5.1 which uses the corrected, finitely generated, version of the Handel-Mosher theorem and relies on the 0-acylindricity of the action of Out(FN)Out(F_N) on the free factor complex (due to Bestvina-Mann-Reynolds). A proof of 0-acylindricity is included in the corrigendum.Comment: Included a corrigendum which gives a corrected proof of Lemma 5.1 about the existence of a fully irreducible element in an infinite normal subgroup of of Out(F_N). Note that, because of the arXiv rules, the corrigendum and the original article are amalgamated into a single pdf file, with the corrigendum appearing first, followed by the main body of the original articl

    Clustering Partially Observed Graphs via Convex Optimization

    Get PDF
    This paper considers the problem of clustering a partially observed unweighted graph---i.e., one where for some node pairs we know there is an edge between them, for some others we know there is no edge, and for the remaining we do not know whether or not there is an edge. We want to organize the nodes into disjoint clusters so that there is relatively dense (observed) connectivity within clusters, and sparse across clusters. We take a novel yet natural approach to this problem, by focusing on finding the clustering that minimizes the number of "disagreements"---i.e., the sum of the number of (observed) missing edges within clusters, and (observed) present edges across clusters. Our algorithm uses convex optimization; its basis is a reduction of disagreement minimization to the problem of recovering an (unknown) low-rank matrix and an (unknown) sparse matrix from their partially observed sum. We evaluate the performance of our algorithm on the classical Planted Partition/Stochastic Block Model. Our main theorem provides sufficient conditions for the success of our algorithm as a function of the minimum cluster size, edge density and observation probability; in particular, the results characterize the tradeoff between the observation probability and the edge density gap. When there are a constant number of clusters of equal size, our results are optimal up to logarithmic factors.Comment: This is the final version published in Journal of Machine Learning Research (JMLR). Partial results appeared in International Conference on Machine Learning (ICML) 201

    Fixed Point Polynomials of Permutation Groups

    Get PDF
    In this paper we study, given a group GG of permutations of a finite set, the so-called fixed point polynomial ∑i=0nfixi\sum_{i=0}^{n}f_{i}x^{i}, where fif_{i} is the number of permutations in GG which have exactly ii fixed points. In particular, we investigate how root location relates to properties of the permutation group. We show that for a large family of such groups most roots are close to the unit circle and roughly uniformly distributed round it. We prove that many families of such polynomials have few real roots. We show that many of these polynomials are irreducible when the group acts transitively. We close by indicating some future directions of this research. A corrigendum was appended to this paper on 10th October 2014. </jats:p

    Coding Theory and Algebraic Combinatorics

    Full text link
    This chapter introduces and elaborates on the fruitful interplay of coding theory and algebraic combinatorics, with most of the focus on the interaction of codes with combinatorial designs, finite geometries, simple groups, sphere packings, kissing numbers, lattices, and association schemes. In particular, special interest is devoted to the relationship between codes and combinatorial designs. We describe and recapitulate important results in the development of the state of the art. In addition, we give illustrative examples and constructions, and highlight recent advances. Finally, we provide a collection of significant open problems and challenges concerning future research.Comment: 33 pages; handbook chapter, to appear in: "Selected Topics in Information and Coding Theory", ed. by I. Woungang et al., World Scientific, Singapore, 201

    A Canonical Form for Positive Definite Matrices

    Get PDF
    We exhibit an explicit, deterministic algorithm for finding a canonical form for a positive definite matrix under unimodular integral transformations. We use characteristic sets of short vectors and partition-backtracking graph software. The algorithm runs in a number of arithmetic operations that is exponential in the dimension nn, but it is practical and more efficient than canonical forms based on Minkowski reduction
    • …
    corecore