3,258 research outputs found

    Some geometric structures and bounds for Ramsey numbers

    Get PDF
    AbstractWe investigate several bounds for both K2,m−K1,n Ramsey numbers and K2,m−K1,n bipartite Ramsey numbers, extending some previous results. Constructions based on certain geometric structures (designs, projective planes, unitals) yield classes of near-optimal bounds or even exact values. Moreover, relationships between these numbers are also discussed

    Ramsey numbers of ordered graphs

    Full text link
    An ordered graph is a pair G=(G,)\mathcal{G}=(G,\prec) where GG is a graph and \prec is a total ordering of its vertices. The ordered Ramsey number R(G)\overline{R}(\mathcal{G}) is the minimum number NN such that every ordered complete graph with NN vertices and with edges colored by two colors contains a monochromatic copy of G\mathcal{G}. In contrast with the case of unordered graphs, we show that there are arbitrarily large ordered matchings Mn\mathcal{M}_n on nn vertices for which R(Mn)\overline{R}(\mathcal{M}_n) is superpolynomial in nn. This implies that ordered Ramsey numbers of the same graph can grow superpolynomially in the size of the graph in one ordering and remain linear in another ordering. We also prove that the ordered Ramsey number R(G)\overline{R}(\mathcal{G}) is polynomial in the number of vertices of G\mathcal{G} if the bandwidth of G\mathcal{G} is constant or if G\mathcal{G} is an ordered graph of constant degeneracy and constant interval chromatic number. The first result gives a positive answer to a question of Conlon, Fox, Lee, and Sudakov. For a few special classes of ordered paths, stars or matchings, we give asymptotically tight bounds on their ordered Ramsey numbers. For so-called monotone cycles we compute their ordered Ramsey numbers exactly. This result implies exact formulas for geometric Ramsey numbers of cycles introduced by K\'arolyi, Pach, T\'oth, and Valtr.Comment: 29 pages, 13 figures, to appear in Electronic Journal of Combinatoric

    Ramsey-type theorems for lines in 3-space

    Full text link
    We prove geometric Ramsey-type statements on collections of lines in 3-space. These statements give guarantees on the size of a clique or an independent set in (hyper)graphs induced by incidence relations between lines, points, and reguli in 3-space. Among other things, we prove that: (1) The intersection graph of n lines in R^3 has a clique or independent set of size Omega(n^{1/3}). (2) Every set of n lines in R^3 has a subset of n^{1/2} lines that are all stabbed by one line, or a subset of Omega((n/log n)^{1/5}) such that no 6-subset is stabbed by one line. (3) Every set of n lines in general position in R^3 has a subset of Omega(n^{2/3}) lines that all lie on a regulus, or a subset of Omega(n^{1/3}) lines such that no 4-subset is contained in a regulus. The proofs of these statements all follow from geometric incidence bounds -- such as the Guth-Katz bound on point-line incidences in R^3 -- combined with Tur\'an-type results on independent sets in sparse graphs and hypergraphs. Although similar Ramsey-type statements can be proved using existing generic algebraic frameworks, the lower bounds we get are much larger than what can be obtained with these methods. The proofs directly yield polynomial-time algorithms for finding subsets of the claimed size.Comment: 18 pages including appendi

    Semi-algebraic Ramsey numbers

    Get PDF
    Given a finite point set PRdP \subset \mathbb{R}^d, a kk-ary semi-algebraic relation EE on PP is the set of kk-tuples of points in PP, which is determined by a finite number of polynomial equations and inequalities in kdkd real variables. The description complexity of such a relation is at most tt if the number of polynomials and their degrees are all bounded by tt. The Ramsey number Rkd,t(s,n)R^{d,t}_k(s,n) is the minimum NN such that any NN-element point set PP in Rd\mathbb{R}^d equipped with a kk-ary semi-algebraic relation EE, such that EE has complexity at most tt, contains ss members such that every kk-tuple induced by them is in EE, or nn members such that every kk-tuple induced by them is not in EE. We give a new upper bound for Rkd,t(s,n)R^{d,t}_k(s,n) for k3k\geq 3 and ss fixed. In particular, we show that for fixed integers d,t,sd,t,s, R3d,t(s,n)2no(1),R^{d,t}_3(s,n) \leq 2^{n^{o(1)}}, establishing a subexponential upper bound on R3d,t(s,n)R^{d,t}_3(s,n). This improves the previous bound of 2nC2^{n^C} due to Conlon, Fox, Pach, Sudakov, and Suk, where CC is a very large constant depending on d,t,d,t, and ss. As an application, we give new estimates for a recently studied Ramsey-type problem on hyperplane arrangements in Rd\mathbb{R}^d. We also study multi-color Ramsey numbers for triangles in our semi-algebraic setting, achieving some partial results

    New Lower Bounds for van der Waerden Numbers Using Distributed Computing

    Full text link
    This paper provides new lower bounds for van der Waerden numbers. The number W(k,r)W(k,r) is defined to be the smallest integer nn for which any rr-coloring of the integers 0,n10 \ldots, n-1 admits monochromatic arithmetic progression of length kk; its existence is implied by van der Waerden's Theorem. We exhibit rr-colorings of 0n10\ldots n-1 that do not contain monochromatic arithmetic progressions of length kk to prove that W(k,r)>nW(k, r)>n. These colorings are constructed using existing techniques. Rabung's method, given a prime pp and a primitive root ρ\rho, applies a color given by the discrete logarithm base ρ\rho mod rr and concatenates k1k-1 copies. We also used Herwig et al's Cyclic Zipper Method, which doubles or quadruples the length of a coloring, with the faster check of Rabung and Lotts. We were able to check larger primes than previous results, employing around 2 teraflops of computing power for 12 months through distributed computing by over 500 volunteers. This allowed us to check all primes through 950 million, compared to 10 million by Rabung and Lotts. Our lower bounds appear to grow roughly exponentially in kk. Given that these constructions produce tight lower bounds for known van der Waerden numbers, this data suggests that exact van der Waerden Numbers grow exponentially in kk with ratio rr asymptotically, which is a new conjecture, according to Graham.Comment: 8 pages, 1 figure. This version reflects new results and reader comment

    On metric Ramsey-type phenomena

    Full text link
    The main question studied in this article may be viewed as a nonlinear analogue of Dvoretzky's theorem in Banach space theory or as part of Ramsey theory in combinatorics. Given a finite metric space on n points, we seek its subspace of largest cardinality which can be embedded with a given distortion in Hilbert space. We provide nearly tight upper and lower bounds on the cardinality of this subspace in terms of n and the desired distortion. Our main theorem states that for any epsilon>0, every n point metric space contains a subset of size at least n^{1-\epsilon} which is embeddable in Hilbert space with O(\frac{\log(1/\epsilon)}{\epsilon}) distortion. The bound on the distortion is tight up to the log(1/\epsilon) factor. We further include a comprehensive study of various other aspects of this problem.Comment: 67 pages, published versio

    Density version of the Ramsey problem and the directed Ramsey problem

    Get PDF
    We discuss a variant of the Ramsey and the directed Ramsey problem. First, consider a complete graph on nn vertices and a two-coloring of the edges such that every edge is colored with at least one color and the number of bicolored edges ERB|E_{RB}| is given. The aim is to find the maximal size ff of a monochromatic clique which is guaranteed by such a coloring. Analogously, in the second problem we consider semicomplete digraph on nn vertices such that the number of bi-oriented edges Ebi|E_{bi}| is given. The aim is to bound the size FF of the maximal transitive subtournament that is guaranteed by such a digraph. Applying probabilistic and analytic tools and constructive methods we show that if ERB=Ebi=p(n2)|E_{RB}|=|E_{bi}| = p{n\choose 2}, (p[0,1)p\in [0,1)), then f,F<Cplog(n)f, F < C_p\log(n) where CpC_p only depend on pp, while if m=(n2)ERB<n3/2m={n \choose 2} - |E_{RB}| <n^{3/2} then f=Θ(n2m+n)f= \Theta (\frac{n^2}{m+n}). The latter case is strongly connected to Tur\'an-type extremal graph theory.Comment: 17 pages. Further lower bound added in case $|E_{RB}|=|E_{bi}| = p{n\choose 2}

    On the general position subset selection problem

    Full text link
    Let f(n,)f(n,\ell) be the maximum integer such that every set of nn points in the plane with at most \ell collinear contains a subset of f(n,)f(n,\ell) points with no three collinear. First we prove that if O(n)\ell \leq O(\sqrt{n}) then f(n,)Ω(nln)f(n,\ell)\geq \Omega(\sqrt{\frac{n}{\ln \ell}}). Second we prove that if O(n(1ϵ)/2)\ell \leq O(n^{(1-\epsilon)/2}) then f(n,)Ω(nlogn)f(n,\ell) \geq \Omega(\sqrt{n\log_\ell n}), which implies all previously known lower bounds on f(n,)f(n,\ell) and improves them when \ell is not fixed. A more general problem is to consider subsets with at most kk collinear points in a point set with at most \ell collinear. We also prove analogous results in this setting
    corecore