2,856 research outputs found

    Enabling Compression in Tiny Wireless Sensor Nodes

    Get PDF
    A Wireless Sensor Network (WSN) is a network composed of sensor nodes communicating among themselves and deployed in large scale (from tens to thousands) for applications such as environmental, habitat and structural monitoring, disaster management, equipment diagnostic, alarm detection, and target classification. In WSNs, typically, sensor nodes are randomly distributed over the area under observation with very high density. Each node is a small device able to collect information from the surrounding environment through one or more sensors, to elaborate this information locally and to communicate it to a data collection centre called sink or base station. WSNs are currently an active research area mainly due to the potential of their applications. However, the deployment of a large scale WSN still requires solutions to a number of technical challenges that stem primarily from the features of the sensor nodes such as limited computational power, reduced communication bandwidth and small storage capacity. Further, since sensor nodes are typically powered by batteries with a limited capacity, energy is a primary constraint in the design and deployment of WSNs. Datasheets of commercial sensor nodes show that data communication is very expensive in terms of energy consumption, whereas data processing consumes significantly less: the energy cost of receiving or transmitting a single bit of information is approximately the same as that required by the processing unit for executing a thousand operations. On the other hand, the energy consumption of the sensing unit depends on the specific sensor type. In several cases, however, it is negligible with respect to the energy consumed by the communication unit and sometimes also by the processing unit. Thus, to extend the lifetime of a WSN, most of the energy conservation schemes proposed in the literature aim to minimize the energy consumption of the communication unit (Croce et al., 2008). To achieve this objective, two main approaches have been followed: power saving through duty cycling and in-network processing. Duty cycling schemes define coordinated sleep/wakeup schedules among nodes in the network. A detailed description of these techniques applied to WSNs can be found in (Anastasi et al., 2009). On the other hand, in-network processing consists in reducing the amount of information to be transmitted by means of aggregation (Boulis et al., 2003) (Croce et al., 2008) (Di Bacco et al., 2004) (Fan et al., 2007)

    Foreword and editorial - July issue

    Full text link

    A Message Passing Approach for Decision Fusion in Adversarial Multi-Sensor Networks

    Full text link
    We consider a simple, yet widely studied, set-up in which a Fusion Center (FC) is asked to make a binary decision about a sequence of system states by relying on the possibly corrupted decisions provided by byzantine nodes, i.e. nodes which deliberately alter the result of the local decision to induce an error at the fusion center. When independent states are considered, the optimum fusion rule over a batch of observations has already been derived, however its complexity prevents its use in conjunction with large observation windows. In this paper, we propose a near-optimal algorithm based on message passing that greatly reduces the computational burden of the optimum fusion rule. In addition, the proposed algorithm retains very good performance also in the case of dependent system states. By first focusing on the case of small observation windows, we use numerical simulations to show that the proposed scheme introduces a negligible increase of the decision error probability compared to the optimum fusion rule. We then analyse the performance of the new scheme when the FC make its decision by relying on long observation windows. We do so by considering both the case of independent and Markovian system states and show that the obtained performance are superior to those obtained with prior suboptimal schemes. As an additional result, we confirm the previous finding that, in some cases, it is preferable for the byzantine nodes to minimise the mutual information between the sequence system states and the reports submitted to the FC, rather than always flipping the local decision

    Operational Rate-Distortion Performance of Single-source and Distributed Compressed Sensing

    Get PDF
    We consider correlated and distributed sources without cooperation at the encoder. For these sources, we derive the best achievable performance in the rate-distortion sense of any distributed compressed sensing scheme, under the constraint of high--rate quantization. Moreover, under this model we derive a closed--form expression of the rate gain achieved by taking into account the correlation of the sources at the receiver and a closed--form expression of the average performance of the oracle receiver for independent and joint reconstruction. Finally, we show experimentally that the exploitation of the correlation between the sources performs close to optimal and that the only penalty is due to the missing knowledge of the sparsity support as in (non distributed) compressed sensing. Even if the derivation is performed in the large system regime, where signal and system parameters tend to infinity, numerical results show that the equations match simulations for parameter values of practical interest.Comment: To appear in IEEE Transactions on Communication
    • …
    corecore