2,192 research outputs found

    Quantum Convolutional BCH Codes

    Full text link
    Quantum convolutional codes can be used to protect a sequence of qubits of arbitrary length against decoherence. We introduce two new families of quantum convolutional codes. Our construction is based on an algebraic method which allows to construct classical convolutional codes from block codes, in particular BCH codes. These codes have the property that they contain their Euclidean, respectively Hermitian, dual codes. Hence, they can be used to define quantum convolutional codes by the stabilizer code construction. We compute BCH-like bounds on the free distances which can be controlled as in the case of block codes, and establish that the codes have non-catastrophic encoders.Comment: 4 pages, minor changes, accepted for publication at the 10th Canadian Workshop on Information Theory (CWIT'07

    Decoding of Convolutional Codes over the Erasure Channel

    Full text link
    In this paper we study the decoding capabilities of convolutional codes over the erasure channel. Of special interest will be maximum distance profile (MDP) convolutional codes. These are codes which have a maximum possible column distance increase. We show how this strong minimum distance condition of MDP convolutional codes help us to solve error situations that maximum distance separable (MDS) block codes fail to solve. Towards this goal, we define two subclasses of MDP codes: reverse-MDP convolutional codes and complete-MDP convolutional codes. Reverse-MDP codes have the capability to recover a maximum number of erasures using an algorithm which runs backward in time. Complete-MDP convolutional codes are both MDP and reverse-MDP codes. They are capable to recover the state of the decoder under the mildest condition. We show that complete-MDP convolutional codes perform in certain sense better than MDS block codes of the same rate over the erasure channel.Comment: 18 pages, 3 figures, to appear on IEEE Transactions on Information Theor
    • …
    corecore