4,223 research outputs found

    A Characterization of Strong Completeness in Fuzzy Metric Spaces

    Full text link
    [EN] Here, we deal with the concept of fuzzy metric space(X,M,*), due to George and Veeramani. Based on the fuzzy diameter for a subset ofX, we introduce the notion of strong fuzzy diameter zero for a family of subsets. Then, we characterize nested sequences of subsets having strong fuzzy diameter zero using their fuzzy diameter. Examples of sequences of subsets which do or do not have strong fuzzy diameter zero are provided. Our main result is the following characterization: a fuzzy metric space is strongly complete if and only if every nested sequence of close subsets which has strong fuzzy diameter zero has a singleton intersection. Moreover, the standard fuzzy metric is studied as a particular case. Finally, this work points out a route of research in fuzzy fixed point theory.Juan-Jose Minana acknowledges financial support from FEDER/Ministerio de Ciencia, Innovacion y Universidades-Agencia Estatal de Investigacion/Proyecto PGC2018-095709-B-C21, and by Spanish Ministry of Economy and Competitiveness under contract DPI2017-86372-C3-3-R (AEI, FEDER, UE). This work was also partially supported by Programa Operatiu FEDER 2014-2020 de les Illes Balears, by project PROCOE/4/2017 (Direccio General d'Innovacio i Recerca, Govern de les Illes Balears), and by projects ROBINS and BUGWRIGHT2. These two latest projects have received funding from the European Union's Horizon 2020 research and innovation program under grant agreements Nos. 779776 and 871260, respectively. This publication reflects only the authors views and the European Union is not liable for any use that may be made of the information contained therein.Gregori Gregori, V.; Miñana, J.; Roig, B.; Sapena Piera, A. (2020). A Characterization of Strong Completeness in Fuzzy Metric Spaces. Mathematics. 8(6):1-11. https://doi.org/10.3390/math8060861S11186Menger, K. (1942). Statistical Metrics. Proceedings of the National Academy of Sciences, 28(12), 535-537. doi:10.1073/pnas.28.12.535George, A., & Veeramani, P. (1994). On some results in fuzzy metric spaces. Fuzzy Sets and Systems, 64(3), 395-399. doi:10.1016/0165-0114(94)90162-7Gregori, V., & Romaguera, S. (2000). Some properties of fuzzy metric spaces. Fuzzy Sets and Systems, 115(3), 485-489. doi:10.1016/s0165-0114(98)00281-4Gregori, V. (2002). On completion of fuzzy metric spaces. Fuzzy Sets and Systems, 130(3), 399-404. doi:10.1016/s0165-0114(02)00115-xAtanassov, K. T. (1986). Intuitionistic fuzzy sets. Fuzzy Sets and Systems, 20(1), 87-96. doi:10.1016/s0165-0114(86)80034-3Gregori, V., Romaguera, S., & Veeramani, P. (2006). A note on intuitionistic fuzzy metric spaces☆. Chaos, Solitons & Fractals, 28(4), 902-905. doi:10.1016/j.chaos.2005.08.113Gregori, V., & Sapena, A. (2018). Remarks to «on strong intuitionistic fuzzy metrics». Journal of Nonlinear Sciences and Applications, 11(02), 316-322. doi:10.22436/jnsa.011.02.12Abu-Donia, H. M., Atia, H. A., & Khater, O. M. A. (2020). Common fixed point theorems in intuitionistic fuzzy metric spaces and intuitionistic (ϕ,ψ)-contractive mappings. Journal of Nonlinear Sciences and Applications, 13(06), 323-329. doi:10.22436/jnsa.013.06.03Gregori, V., & Miñana, J.-J. (2016). On fuzzy ψ -contractive sequences and fixed point theorems. Fuzzy Sets and Systems, 300, 93-101. doi:10.1016/j.fss.2015.12.010Miheţ, D. (2007). On fuzzy contractive mappings in fuzzy metric spaces. Fuzzy Sets and Systems, 158(8), 915-921. doi:10.1016/j.fss.2006.11.012Wardowski, D. (2013). Fuzzy contractive mappings and fixed points in fuzzy metric spaces. Fuzzy Sets and Systems, 222, 108-114. doi:10.1016/j.fss.2013.01.012Gregori, V., Miñana, J.-J., Morillas, S., & Sapena, A. (2016). Cauchyness and convergence in fuzzy metric spaces. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 111(1), 25-37. doi:10.1007/s13398-015-0272-0Gregori, V., & Miñana, J.-J. (2017). Strong convergence in fuzzy metric spaces. Filomat, 31(6), 1619-1625. doi:10.2298/fil1706619gGrabiec, M. (1988). Fixed points in fuzzy metric spaces. Fuzzy Sets and Systems, 27(3), 385-389. doi:10.1016/0165-0114(88)90064-4George, A., & Veeramani, P. (1997). On some results of analysis for fuzzy metric spaces. Fuzzy Sets and Systems, 90(3), 365-368. doi:10.1016/s0165-0114(96)00207-2Miheţ, D. (2008). Fuzzy -contractive mappings in non-Archimedean fuzzy metric spaces. Fuzzy Sets and Systems, 159(6), 739-744. doi:10.1016/j.fss.2007.07.006Vasuki, R., & Veeramani, P. (2003). Fixed point theorems and Cauchy sequences in fuzzy metric spaces. Fuzzy Sets and Systems, 135(3), 415-417. doi:10.1016/s0165-0114(02)00132-xGregori, V., & Romaguera, S. (2004). Characterizing completable fuzzy metric spaces. Fuzzy Sets and Systems, 144(3), 411-420. doi:10.1016/s0165-0114(03)00161-1Gregori, V., Miñana, J.-J., & Morillas, S. (2012). Some questions in fuzzy metric spaces. Fuzzy Sets and Systems, 204, 71-85. doi:10.1016/j.fss.2011.12.008Ricarte, L. A., & Romaguera, S. (2014). A domain-theoretic approach to fuzzy metric spaces. Topology and its Applications, 163, 149-159. doi:10.1016/j.topol.2013.10.014Gregori, V., López-Crevillén, A., Morillas, S., & Sapena, A. (2009). On convergence in fuzzy metric spaces. Topology and its Applications, 156(18), 3002-3006. doi:10.1016/j.topol.2008.12.043Sherwood, H. (1966). On the completion of probabilistic metric spaces. Zeitschrift f�r Wahrscheinlichkeitstheorie und Verwandte Gebiete, 6(1), 62-64. doi:10.1007/bf00531809Shukla, S., Gopal, D., & Sintunavarat, W. (2018). A new class of fuzzy contractive mappings and fixed point theorems. Fuzzy Sets and Systems, 350, 85-94. doi:10.1016/j.fss.2018.02.010Beg, I., Gopal, D., Došenović, T., … Rakić, D. (2018). α-type fuzzy H-contractive mappings in fuzzy metric spaces. Fixed Point Theory, 19(2), 463-474. doi:10.24193/fpt-ro.2018.2.37Zheng, D., & Wang, P. (2019). Meir–Keeler theorems in fuzzy metric spaces. Fuzzy Sets and Systems, 370, 120-128. doi:10.1016/j.fss.2018.08.014Rakić, D., Došenović, T., Mitrović, Z. D., de la Sen, M., & Radenović, S. (2020). Some Fixed Point Theorems of Ćirić Type in Fuzzy Metric Spaces. Mathematics, 8(2), 297. doi:10.3390/math802029

    Topology from enrichment: the curious case of partial metrics

    Get PDF
    For any small quantaloid \Q, there is a new quantaloid \D(\Q) of diagonals in \Q. If \Q is divisible then so is \D(\Q) (and vice versa), and then it is particularly interesting to compare categories enriched in \Q with categories enriched in \D(\Q). Taking Lawvere's quantale of extended positive real numbers as base quantale, \Q-categories are generalised metric spaces, and \D(\Q)-categories are generalised partial metric spaces, i.e.\ metric spaces in which self-distance need not be zero and with a suitably modified triangular inequality. We show how every small quantaloid-enriched category has a canonical closure operator on its set of objects: this makes for a functor from quantaloid-enriched categories to closure spaces. Under mild necessary-and-sufficient conditions on the base quantaloid, this functor lands in the category of topological spaces; and an involutive quantaloid is Cauchy-bilateral (a property discovered earlier in the context of distributive laws) if and only if the closure on any enriched category is identical to the closure on its symmetrisation. As this now applies to metric spaces and partial metric spaces alike, we demonstrate how these general categorical constructions produce the "correct" definitions of convergence and Cauchyness of sequences in generalised partial metric spaces. Finally we describe the Cauchy-completion, the Hausdorff contruction and exponentiability of a partial metric space, again by application of general quantaloid-enriched category theory.Comment: Apart from some minor corrections, this second version contains a revised section on Cauchy sequences in a partial metric spac

    Characterizing Complete Fuzzy Metric Spaces Via Fixed Point Results

    Full text link
    [EN] With the help of C-contractions having a fixed point, we obtain a characterization of complete fuzzy metric spaces, in the sense of Kramosil and Michalek, that extends the classical theorem of H. Hu (see "Am. Math. Month. 1967, 74, 436-437") that a metric space is complete if and only if any Banach contraction on any of its closed subsets has a fixed point. We apply our main result to deduce that a well-known fixed point theorem due to D. Mihet (see "Fixed Point Theory 2005, 6, 71-78") also allows us to characterize the fuzzy metric completeness.This research was partially funded by Ministerio de Ciencia, Innovacion y Universidades, under grant PGC2018-095709-B-C21 and AEI/FEDER, UE funds.Romaguera Bonilla, S.; Tirado Peláez, P. (2020). Characterizing Complete Fuzzy Metric Spaces Via Fixed Point Results. Mathematics. 8(2):1-7. https://doi.org/10.3390/math8020273S1782Connell, E. H. (1959). Properties of fixed point spaces. Proceedings of the American Mathematical Society, 10(6), 974-979. doi:10.1090/s0002-9939-1959-0110093-3Hu, T. K. (1967). On a Fixed-Point Theorem for Metric Spaces. The American Mathematical Monthly, 74(4), 436. doi:10.2307/2314587Subrahmanyam, P. V. (1975). Completeness and fixed-points. Monatshefte f�r Mathematik, 80(4), 325-330. doi:10.1007/bf01472580Kirk, W. A. (1976). Caristi’s fixed point theorem and metric convexity. Colloquium Mathematicum, 36(1), 81-86. doi:10.4064/cm-36-1-81-86Caristi, J. (1976). Fixed point theorems for mappings satisfying inwardness conditions. Transactions of the American Mathematical Society, 215, 241-241. doi:10.1090/s0002-9947-1976-0394329-4Suzuki, T., & Takahashi, W. (1996). Fixed point theorems and characterizations of metric completeness. Topological Methods in Nonlinear Analysis, 8(2), 371. doi:10.12775/tmna.1996.040Suzuki, T. (2007). A generalized Banach contraction principle that characterizes metric completeness. Proceedings of the American Mathematical Society, 136(05), 1861-1870. doi:10.1090/s0002-9939-07-09055-7Romaguera, S., & Tirado, P. (2019). A Characterization of Quasi-Metric Completeness in Terms of α–ψ-Contractive Mappings Having Fixed Points. Mathematics, 8(1), 16. doi:10.3390/math8010016Samet, B., Vetro, C., & Vetro, P. (2012). Fixed point theorems for -contractive type mappings. Nonlinear Analysis: Theory, Methods & Applications, 75(4), 2154-2165. doi:10.1016/j.na.2011.10.014Abbas, M., Ali, B., & Romaguera, S. (2015). Multivalued Caristi’s type mappings in fuzzy metric spaces and a characterization of fuzzy metric completeness. Filomat, 29(6), 1217-1222. doi:10.2298/fil1506217aCastro-Company, F., Romaguera, S., & Tirado, P. (2015). On the construction of metrics from fuzzy metrics and its application to the fixed point theory of multivalued mappings. Fixed Point Theory and Applications, 2015(1). doi:10.1186/s13663-015-0476-1Radu, V. (1987). Some fixed point theorems probabilistic metric spaces. Lecture Notes in Mathematics, 125-133. doi:10.1007/bfb0072718Sehgal, V. M., & Bharucha-Reid, A. T. (1972). Fixed points of contraction mappings on probabilistic metric spaces. Mathematical Systems Theory, 6(1-2), 97-102. doi:10.1007/bf01706080Ćirić, L. (2010). Solving the Banach fixed point principle for nonlinear contractions in probabilistic metric spaces. Nonlinear Analysis: Theory, Methods & Applications, 72(3-4), 2009-2018. doi:10.1016/j.na.2009.10.00
    • …
    corecore