174 research outputs found

    An overview of the goodness-of-fit test problem for copulas

    Full text link
    We review the main "omnibus procedures" for goodness-of-fit testing for copulas: tests based on the empirical copula process, on probability integral transformations, on Kendall's dependence function, etc, and some corresponding reductions of dimension techniques. The problems of finding asymptotic distribution-free test statistics and the calculation of reliable p-values are discussed. Some particular cases, like convenient tests for time-dependent copulas, for Archimedean or extreme-value copulas, etc, are dealt with. Finally, the practical performances of the proposed approaches are briefly summarized

    Goodness-of-fit Tests For Elliptical And Independent Copulas Through Projection Pursuit

    Full text link
    Two goodness-of-fit tests for copulas are being investigated. The first one deals with the case of elliptical copulas and the second one deals with independent copulas. These tests result from the expansion of the projection pursuit methodology we will introduce in the present article. This method enables us to determine on which axis system these copulas lie as well as the exact value of these very copulas in the basis formed by the axes previously determined irrespective of their value in their canonical basis. Simulations are also presented as well as an application to real datasets.Comment: 31 page

    Parametric versus nonparametric: the fitness coefficient

    Full text link
    The fitness coefficient, introduced in this paper, results from a competition between parametric and nonparametric density estimators within the likelihood of the data. As illustrated on several real datasets, the fitness coefficient generally agrees with p-values but is easier to compute and interpret. Namely, the fitness coefficient can be interpreted as the proportion of data coming from the parametric model. Moreover, the fitness coefficient can be used to build a semiparamteric compromise which improves inference over the parametric and nonparametric approaches. From a theoretical perspective, the fitness coefficient is shown to converge in probability to one if the model is true and to zero if the model is false. From a practical perspective, the utility of the fitness coefficient is illustrated on real and simulated datasets

    Extreme value copula estimation based on block maxima of a multivariate stationary time series

    Get PDF
    The core of the classical block maxima method consists of fitting an extreme value distribution to a sample of maxima over blocks extracted from an underlying series. In asymptotic theory, it is usually postulated that the block maxima are an independent random sample of an extreme value distribution. In practice however, block sizes are finite, so that the extreme value postulate will only hold approximately. A more accurate asymptotic framework is that of a triangular array of block maxima, the block size depending on the size of the underlying sample in such a way that both the block size and the number of blocks within that sample tend to infinity. The copula of the vector of componentwise maxima in a block is assumed to converge to a limit, which, under mild conditions, is then necessarily an extreme value copula. Under this setting and for absolutely regular stationary sequences, the empirical copula of the sample of vectors of block maxima is shown to be a consistent and asymptotically normal estimator for the limiting extreme value copula. Moreover, the empirical copula serves as a basis for rank-based, nonparametric estimation of the Pickands dependence function of the extreme value copula. The results are illustrated by theoretical examples and a Monte Carlo simulation study.Comment: 34 page

    Nonparametric independence testing via mutual information

    Get PDF
    We propose a test of independence of two multivariate random vectors, given a sample from the underlying population. Our approach, which we call MINT, is based on the estimation of mutual information, whose decomposition into joint and marginal entropies facilitates the use of recently-developed efficient entropy estimators derived from nearest neighbour distances. The proposed critical values, which may be obtained from simulation (in the case where one marginal is known) or resampling, guarantee that the test has nominal size, and we provide local power analyses, uniformly over classes of densities whose mutual information satisfies a lower bound. Our ideas may be extended to provide a new goodness-of-fit tests of normal linear models based on assessing the independence of our vector of covariates and an appropriately-defined notion of an error vector. The theory is supported by numerical studies on both simulated and real data.EPSRC Leverhulme Trust SIMS fun

    Statistical Aspects of Wasserstein Distances

    Full text link
    Wasserstein distances are metrics on probability distributions inspired by the problem of optimal mass transportation. Roughly speaking, they measure the minimal effort required to reconfigure the probability mass of one distribution in order to recover the other distribution. They are ubiquitous in mathematics, with a long history that has seen them catalyse core developments in analysis, optimization, and probability. Beyond their intrinsic mathematical richness, they possess attractive features that make them a versatile tool for the statistician: they can be used to derive weak convergence and convergence of moments, and can be easily bounded; they are well-adapted to quantify a natural notion of perturbation of a probability distribution; and they seamlessly incorporate the geometry of the domain of the distributions in question, thus being useful for contrasting complex objects. Consequently, they frequently appear in the development of statistical theory and inferential methodology, and have recently become an object of inference in themselves. In this review, we provide a snapshot of the main concepts involved in Wasserstein distances and optimal transportation, and a succinct overview of some of their many statistical aspects.Comment: Official version available at https://www.annualreviews.org/doi/full/10.1146/annurev-statistics-030718-10493
    • …
    corecore