2,997 research outputs found

    Lower bounds for identifying subset members with subset queries

    Full text link
    An instance of a group testing problem is a set of objects \cO and an unknown subset PP of \cO. The task is to determine PP by using queries of the type ``does PP intersect QQ'', where QQ is a subset of \cO. This problem occurs in areas such as fault detection, multiaccess communications, optimal search, blood testing and chromosome mapping. Consider the two stage algorithm for solving a group testing problem. In the first stage a predetermined set of queries are asked in parallel and in the second stage, PP is determined by testing individual objects. Let n=\cardof{\cO}. Suppose that PP is generated by independently adding each x\in \cO to PP with probability p/np/n. Let q1q_1 (q2q_2) be the number of queries asked in the first (second) stage of this algorithm. We show that if q1=o(logā”(n)logā”(n)/logā”logā”(n))q_1=o(\log(n)\log(n)/\log\log(n)), then \Exp(q_2) = n^{1-o(1)}, while there exist algorithms with q1=O(logā”(n)logā”(n)/logā”logā”(n))q_1 = O(\log(n)\log(n)/\log\log(n)) and \Exp(q_2) = o(1). The proof involves a relaxation technique which can be used with arbitrary distributions. The best previously known bound is q_1+\Exp(q_2) = \Omega(p\log(n)). For general group testing algorithms, our results imply that if the average number of queries over the course of nĪ³n^\gamma (Ī³>0\gamma>0) independent experiments is O(n1āˆ’Ļµ)O(n^{1-\epsilon}), then with high probability Ī©(logā”(n)logā”(n)/logā”logā”(n))\Omega(\log(n)\log(n)/\log\log(n)) non-singleton subsets are queried. This settles a conjecture of Bill Bruno and David Torney and has important consequences for the use of group testing in screening DNA libraries and other applications where it is more cost effective to use non-adaptive algorithms and/or too expensive to prepare a subset QQ for its first test.Comment: 9 page

    A single-photon sampling architecture for solid-state imaging

    Full text link
    Advances in solid-state technology have enabled the development of silicon photomultiplier sensor arrays capable of sensing individual photons. Combined with high-frequency time-to-digital converters (TDCs), this technology opens up the prospect of sensors capable of recording with high accuracy both the time and location of each detected photon. Such a capability could lead to significant improvements in imaging accuracy, especially for applications operating with low photon fluxes such as LiDAR and positron emission tomography. The demands placed on on-chip readout circuitry imposes stringent trade-offs between fill factor and spatio-temporal resolution, causing many contemporary designs to severely underutilize the technology's full potential. Concentrating on the low photon flux setting, this paper leverages results from group testing and proposes an architecture for a highly efficient readout of pixels using only a small number of TDCs, thereby also reducing both cost and power consumption. The design relies on a multiplexing technique based on binary interconnection matrices. We provide optimized instances of these matrices for various sensor parameters and give explicit upper and lower bounds on the number of TDCs required to uniquely decode a given maximum number of simultaneous photon arrivals. To illustrate the strength of the proposed architecture, we note a typical digitization result of a 120x120 photodiode sensor on a 30um x 30um pitch with a 40ps time resolution and an estimated fill factor of approximately 70%, using only 161 TDCs. The design guarantees registration and unique recovery of up to 4 simultaneous photon arrivals using a fast decoding algorithm. In a series of realistic simulations of scintillation events in clinical positron emission tomography the design was able to recover the spatio-temporal location of 98.6% of all photons that caused pixel firings.Comment: 24 pages, 3 figures, 5 table

    Boolean Compressed Sensing and Noisy Group Testing

    Full text link
    The fundamental task of group testing is to recover a small distinguished subset of items from a large population while efficiently reducing the total number of tests (measurements). The key contribution of this paper is in adopting a new information-theoretic perspective on group testing problems. We formulate the group testing problem as a channel coding/decoding problem and derive a single-letter characterization for the total number of tests used to identify the defective set. Although the focus of this paper is primarily on group testing, our main result is generally applicable to other compressive sensing models. The single letter characterization is shown to be order-wise tight for many interesting noisy group testing scenarios. Specifically, we consider an additive Bernoulli(qq) noise model where we show that, for NN items and KK defectives, the number of tests TT is O(Klogā”N1āˆ’q)O(\frac{K\log N}{1-q}) for arbitrarily small average error probability and O(K2logā”N1āˆ’q)O(\frac{K^2\log N}{1-q}) for a worst case error criterion. We also consider dilution effects whereby a defective item in a positive pool might get diluted with probability uu and potentially missed. In this case, it is shown that TT is O(Klogā”N(1āˆ’u)2)O(\frac{K\log N}{(1-u)^2}) and O(K2logā”N(1āˆ’u)2)O(\frac{K^2\log N}{(1-u)^2}) for the average and the worst case error criteria, respectively. Furthermore, our bounds allow us to verify existing known bounds for noiseless group testing including the deterministic noise-free case and approximate reconstruction with bounded distortion. Our proof of achievability is based on random coding and the analysis of a Maximum Likelihood Detector, and our information theoretic lower bound is based on Fano's inequality.Comment: In this revision: reorganized the paper, added citations to related work, and fixed some bug

    GROTESQUE: Noisy Group Testing (Quick and Efficient)

    Full text link
    Group-testing refers to the problem of identifying (with high probability) a (small) subset of DD defectives from a (large) set of NN items via a "small" number of "pooled" tests. For ease of presentation in this work we focus on the regime when D = \cO{N^{1-\gap}} for some \gap > 0. The tests may be noiseless or noisy, and the testing procedure may be adaptive (the pool defining a test may depend on the outcome of a previous test), or non-adaptive (each test is performed independent of the outcome of other tests). A rich body of literature demonstrates that Ī˜(Dlogā”(N))\Theta(D\log(N)) tests are information-theoretically necessary and sufficient for the group-testing problem, and provides algorithms that achieve this performance. However, it is only recently that reconstruction algorithms with computational complexity that is sub-linear in NN have started being investigated (recent work by \cite{GurI:04,IndN:10, NgoP:11} gave some of the first such algorithms). In the scenario with adaptive tests with noisy outcomes, we present the first scheme that is simultaneously order-optimal (up to small constant factors) in both the number of tests and the decoding complexity (\cO{D\log(N)} in both the performance metrics). The total number of stages of our adaptive algorithm is "small" (\cO{\log(D)}). Similarly, in the scenario with non-adaptive tests with noisy outcomes, we present the first scheme that is simultaneously near-optimal in both the number of tests and the decoding complexity (via an algorithm that requires \cO{D\log(D)\log(N)} tests and has a decoding complexity of {O(D(logā”N+logā”2D)){\cal O}(D(\log N+\log^{2}D))}. Finally, we present an adaptive algorithm that only requires 2 stages, and for which both the number of tests and the decoding complexity scale as {O(D(logā”N+logā”2D)){\cal O}(D(\log N+\log^{2}D))}. For all three settings the probability of error of our algorithms scales as \cO{1/(poly(D)}.Comment: 26 pages, 5 figure

    A monotone Sinai theorem

    Get PDF
    Sinai proved that a nonatomic ergodic measure-preserving system has any Bernoulli shift of no greater entropy as a factor. Given a Bernoulli shift, we show that any other Bernoulli shift that is of strictly less entropy and is stochastically dominated by the original measure can be obtained as a monotone factor; that is, the factor map has the property that for each point in the domain, its image under the factor map is coordinatewise smaller than or equal to the original point.Comment: Published at http://dx.doi.org/10.1214/14-AOP968 in the Annals of Probability (http://www.imstat.org/aop/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Constructions of Batch Codes via Finite Geometry

    Full text link
    A primitive kk-batch code encodes a string xx of length nn into string yy of length NN, such that each multiset of kk symbols from xx has kk mutually disjoint recovering sets from yy. We develop new explicit and random coding constructions of linear primitive batch codes based on finite geometry. In some parameter regimes, our proposed codes have lower redundancy than previously known batch codes.Comment: 7 pages, 1 figure, 1 tabl

    On the Commutative Equivalence of Context-Free Languages

    Get PDF
    The problem of the commutative equivalence of context-free and regular languages is studied. In particular conditions ensuring that a context-free language of exponential growth is commutatively equivalent with a regular language are investigated
    • ā€¦
    corecore