1,225 research outputs found

    Phylogenomics with incomplete taxon coverage: the limits to inference

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Phylogenomic studies based on multi-locus sequence data sets are usually characterized by partial taxon coverage, in which sequences for some loci are missing for some taxa. The impact of missing data has been widely studied in phylogenetics, but it has proven difficult to distinguish effects due to error in tree reconstruction from effects due to missing data per se. We approach this problem using a explicitly phylogenomic criterion of success, <it>decisiveness</it>, which refers to whether the pattern of taxon coverage allows for uniquely defining a single tree for all taxa.</p> <p>Results</p> <p>We establish theoretical bounds on the impact of missing data on decisiveness. Results are derived for two contexts: a fixed taxon coverage pattern, such as that observed from an already assembled data set, and a randomly generated pattern derived from a process of sampling new data, such as might be observed in an ongoing comparative genomics sequencing project. Lower bounds on how many loci are needed for decisiveness are derived for the former case, and both lower and upper bounds for the latter. When data are not decisive for all trees, we estimate the probability of decisiveness and the chances that a given edge in the tree will be distinguishable. Theoretical results are illustrated using several empirical examples constructed by mining sequence databases, genomic libraries such as ESTs and BACs, and complete genome sequences.</p> <p>Conclusion</p> <p>Partial taxon coverage among loci can limit phylogenomic inference by making it impossible to distinguish among multiple alternative trees. However, even though lack of decisiveness is typical of many sparse phylogenomic data sets, it is often still possible to distinguish a large fraction of edges in the tree.</p

    Inferring Temporally Consistent Migration Histories

    Get PDF

    Novel Algorithms and Methodology to Help Unravel Secrets that Next Generation Sequencing Data Can Tell

    Get PDF
    The genome of an organism is its complete set of DNA nucleotides, spanning all of its genes and also of its non-coding regions. It contains most of the information necessary to build and maintain an organism. It is therefore no surprise that sequencing the genome provides an invaluable tool for the scientific study of an organism. Via the inference of an evolutionary (phylogenetic) tree, DNA sequences can be used to reconstruct the evolutionary history of a set of species. DNA sequences, or genotype data, has also proven useful for predicting an organisms’ phenotype (i. e. observed traits) from its genotype. This is the objective of association studies. While methods for finding the DNA sequence of an organism have existed for decades, the recent advent of Next Generation Sequencing (NGS) has meant that the availability of such data has increased to such an extent that the computational challenges that now form an integral part of biological studies can no longer be ignored. By focusing on phylogenetics and Genome-Wide Association Studies (GWAS), this thesis aims to help address some of these challenges. As a consequence this thesis is in two parts with the first one centring on phylogenetics and the second one on GWAS. In the first part, we present theoretical insights for reconstructing phylogenetic trees from incomplete distances. This problem is important in the context of NGS data as incomplete pairwise distances between organisms occur frequently with such input and ignoring taxa for which information is missing can introduce undesirable bias. In the second part we focus on the problem of inferring population stratification between individuals in a dataset due to reproductive isolation. While powerful methods for doing this have been proposed in the literature, they tend to struggle when faced with the sheer volume of data that comes with NGS. To help address this problem we introduce the novel PSIKO software and show that it scales very well when dealing with large NGS datasets

    An efficiently computed lower bound on the number of recombinations in phylogenetic networks: Theory and empirical study

    Get PDF
    AbstractPhylogenetic networks are models of sequence evolution that go beyond trees, allowing biological operations that are not tree-like. One of the most important biological operations is recombination between two sequences. An established problem [J. Hein, Reconstructing evolution of sequences subject to recombination using parsimony, Math. Biosci. 98 (1990) 185–200; J. Hein, A heuristic method to reconstruct the history of sequences subject to recombination, J. Molecular Evoluation 36 (1993) 396–405; Y. Song, J. Hein, Parsimonious reconstruction of sequence evolution and haplotype blocks: finding the minimum number of recombination events, in: Proceedings of 2003 Workshop on Algorithms in Bioinformatics, Berlin, Germany, 2003, Lecture Notes in Computer Science, Springer, Berlin; Y. Song, J. Hein, On the minimum number of recombination events in the evolutionary history of DNA sequences, J. Math. Biol. 48 (2003) 160–186; L. Wang, K. Zhang, L. Zhang, Perfect phylogenetic networks with recombination, J. Comput. Biol. 8 (2001) 69–78; S.R. Myers, R.C. Griffiths, Bounds on the minimum number of recombination events in a sample history, Genetics 163 (2003) 375–394; V. Bafna, V. Bansal, Improved recombination lower bounds for haplotype data, in: Proceedings of RECOMB, 2005; Y. Song, Y. Wu, D. Gusfield, Efficient computation of close lower and upper bounds on the minimum number of needed recombinations in the evolution of biological sequences, Bioinformatics 21 (2005) i413–i422. Bioinformatics (Suppl. 1), Proceedings of ISMB, 2005, D. Gusfield, S. Eddhu, C. Langley, Optimal, efficient reconstruction of phylogenetic networks with constrained recombination, J. Bioinform. Comput. Biol. 2(1) (2004) 173–213; D. Gusfield, Optimal, efficient reconstruction of root-unknown phylogenetic networks with constrained and structured recombination, J. Comput. Systems Sci. 70 (2005) 381–398] is to find a phylogenetic network that derives an input set of sequences, minimizing the number of recombinations used. No efficient, general algorithm is known for this problem. Several papers consider the problem of computing a lower bound on the number of recombinations needed. In this paper we establish a new, efficiently computed lower bound. This result is useful in methods to estimate the number of needed recombinations, and also to prove the optimality of algorithms for constructing phylogenetic networks under certain conditions [D. Gusfield, S. Eddhu, C. Langley, Optimal, efficient reconstruction of phylogenetic networks with constrained recombination, J. Bioinform. Comput. Biol. 2(1) (2004) 173–213; D. Gusfield, Optimal, efficient reconstruction of root-unknown phylogenetic networks with constrained and structured recombination, J. Comput. Systems Sci. 70 (2005) 381–398; D. Gusfield, Optimal, efficient reconstruction of root-unknown phylogenetic networks with constrained recombination, Technical Report, Department of Computer Science, University of California, Davis, CA, 2004]. The lower bound is based on a structural, combinatorial insight, using only the site conflicts and incompatibilities, and hence it is fundamental and applicable to many biological phenomena other than recombination, for example, when gene conversions or recurrent or back mutations or cross-species hybridizations cause the phylogenetic history to deviate from a tree structure. In addition to establishing the bound, we examine its use in more complex lower bound methods, and compare the bounds obtained to those obtained by other established lower bound methods
    corecore