34 research outputs found

    Cyclic Complexity of Words

    Get PDF
    We introduce and study a complexity function on words cx(n),c_x(n), called \emph{cyclic complexity}, which counts the number of conjugacy classes of factors of length nn of an infinite word x.x. We extend the well-known Morse-Hedlund theorem to the setting of cyclic complexity by showing that a word is ultimately periodic if and only if it has bounded cyclic complexity. Unlike most complexity functions, cyclic complexity distinguishes between Sturmian words of different slopes. We prove that if xx is a Sturmian word and yy is a word having the same cyclic complexity of x,x, then up to renaming letters, xx and yy have the same set of factors. In particular, yy is also Sturmian of slope equal to that of x.x. Since cx(n)=1c_x(n)=1 for some n1n\geq 1 implies xx is periodic, it is natural to consider the quantity lim infncx(n).\liminf_{n\rightarrow \infty} c_x(n). We show that if xx is a Sturmian word, then lim infncx(n)=2.\liminf_{n\rightarrow \infty} c_x(n)=2. We prove however that this is not a characterization of Sturmian words by exhibiting a restricted class of Toeplitz words, including the period-doubling word, which also verify this same condition on the limit infimum. In contrast we show that, for the Thue-Morse word tt, lim infnct(n)=+.\liminf_{n\rightarrow \infty} c_t(n)=+\infty.Comment: To appear in Journal of Combinatorial Theory, Series

    Quasiperiodic and Lyndon episturmian words

    Get PDF
    Recently the second two authors characterized quasiperiodic Sturmian words, proving that a Sturmian word is non-quasiperiodic if and only if it is an infinite Lyndon word. Here we extend this study to episturmian words (a natural generalization of Sturmian words) by describing all the quasiperiods of an episturmian word, which yields a characterization of quasiperiodic episturmian words in terms of their "directive words". Even further, we establish a complete characterization of all episturmian words that are Lyndon words. Our main results show that, unlike the Sturmian case, there is a much wider class of episturmian words that are non-quasiperiodic, besides those that are infinite Lyndon words. Our key tools are morphisms and directive words, in particular "normalized" directive words, which we introduced in an earlier paper. Also of importance is the use of "return words" to characterize quasiperiodic episturmian words, since such a method could be useful in other contexts.Comment: 33 pages; minor change

    On a generalization of Abelian equivalence and complexity of infinite words

    Full text link
    In this paper we introduce and study a family of complexity functions of infinite words indexed by k \in \ints ^+ \cup {+\infty}. Let k \in \ints ^+ \cup {+\infty} and AA be a finite non-empty set. Two finite words uu and vv in AA^* are said to be kk-Abelian equivalent if for all xAx\in A^* of length less than or equal to k,k, the number of occurrences of xx in uu is equal to the number of occurrences of xx in v.v. This defines a family of equivalence relations k\thicksim_k on A,A^*, bridging the gap between the usual notion of Abelian equivalence (when k=1k=1) and equality (when k=+).k=+\infty). We show that the number of kk-Abelian equivalence classes of words of length nn grows polynomially, although the degree is exponential in k.k. Given an infinite word \omega \in A^\nats, we consider the associated complexity function \mathcal {P}^{(k)}_\omega :\nats \rightarrow \nats which counts the number of kk-Abelian equivalence classes of factors of ω\omega of length n.n. We show that the complexity function P(k)\mathcal {P}^{(k)} is intimately linked with periodicity. More precisely we define an auxiliary function q^k: \nats \rightarrow \nats and show that if Pω(k)(n)<qk(n)\mathcal {P}^{(k)}_{\omega}(n)<q^k(n) for some k \in \ints ^+ \cup {+\infty} and n0,n\geq 0, the ω\omega is ultimately periodic. Moreover if ω\omega is aperiodic, then Pω(k)(n)=qk(n)\mathcal {P}^{(k)}_{\omega}(n)=q^k(n) if and only if ω\omega is Sturmian. We also study kk-Abelian complexity in connection with repetitions in words. Using Szemer\'edi's theorem, we show that if ω\omega has bounded kk-Abelian complexity, then for every D\subset \nats with positive upper density and for every positive integer N,N, there exists a kk-Abelian NN power occurring in ω\omega at some position $j\in D.
    corecore