4,237 research outputs found

    On upper bounds on the smallest size of a saturating set in a projective plane

    Full text link
    In a projective plane Πq\Pi _{q} (not necessarily Desarguesian) of order q,q, a point subset SS is saturating (or dense) if any point of ΠqS\Pi _{q}\setminus S is collinear with two points in S~S. Using probabilistic methods, the following upper bound on the smallest size s(2,q) s(2,q) of a saturating set in Πq\Pi _{q} is proved: \begin{equation*} s(2,q)\leq 2\sqrt{(q+1)\ln (q+1)}+2\thicksim 2\sqrt{q\ln q}. \end{equation*} We also show that for any constant c1c\ge 1 a random point set of size kk in Πq\Pi _{q} with 2c(q+1)ln(q+1)+2k<q21q+2q 2c\sqrt{(q+1)\ln(q+1)}+2\le k<\frac{q^{2}-1}{q+2}\thicksim q is a saturating set with probability greater than 11/(q+1)2c22.1-1/(q+1)^{2c^{2}-2}. Our probabilistic approach is also applied to multiple saturating sets. A point set SΠqS\subset \Pi_{q} is (1,μ)(1,\mu)-saturating if for every point QQ of ΠqS\Pi _{q}\setminus S the number of secants of SS through QQ is at least μ\mu , counted with multiplicity. The multiplicity of a secant \ell is computed as (#(S)2).{\binom{{\#(\ell \,\cap S)}}{{2}}}. The following upper bound on the smallest size sμ(2,q)s_{\mu }(2,q) of a (1,μ)(1,\mu)-saturating set in Πq\Pi_{q} is proved: \begin{equation*} s_{\mu }(2,q)\leq 2(\mu +1)\sqrt{(q+1)\ln (q+1)}+2\thicksim 2(\mu +1)\sqrt{ q\ln q}\,\text{ for }\,2\leq \mu \leq \sqrt{q}. \end{equation*} By using inductive constructions, upper bounds on the smallest size of a saturating set (as well as on a (1,μ)(1,\mu)-saturating set) in the projective space PG(N,q)PG(N,q) are obtained. All the results are also stated in terms of linear covering codes.Comment: 15 pages, 24 references, misprints are corrected, Sections 3-5 and some references are adde

    On the Peak-to-Mean Envelope Power Ratio of Phase-Shifted Binary Codes

    Full text link
    The peak-to-mean envelope power ratio (PMEPR) of a code employed in orthogonal frequency-division multiplexing (OFDM) systems can be reduced by permuting its coordinates and by rotating each coordinate by a fixed phase shift. Motivated by some previous designs of phase shifts using suboptimal methods, the following question is considered in this paper. For a given binary code, how much PMEPR reduction can be achieved when the phase shifts are taken from a 2^h-ary phase-shift keying (2^h-PSK) constellation? A lower bound on the achievable PMEPR is established, which is related to the covering radius of the binary code. Generally speaking, the achievable region of the PMEPR shrinks as the covering radius of the binary code decreases. The bound is then applied to some well understood codes, including nonredundant BPSK signaling, BCH codes and their duals, Reed-Muller codes, and convolutional codes. It is demonstrated that most (presumably not optimal) phase-shift designs from the literature attain or approach our bound.Comment: minor revisions, accepted for IEEE Trans. Commun
    corecore