702 research outputs found

    Bounds on the Voter Model in Dynamic Networks

    Get PDF
    In the voter model, each node of a graph has an opinion, and in every round each node chooses independently a random neighbour and adopts its opinion. We are interested in the consensus time, which is the first point in time where all nodes have the same opinion. We consider dynamic graphs in which the edges are rewired in every round (by an adversary) giving rise to the graph sequence G1,G2,
G_1, G_2, \dots , where we assume that GiG_i has conductance at least ϕi\phi_i. We assume that the degrees of nodes don't change over time as one can show that the consensus time can become super-exponential otherwise. In the case of a sequence of dd-regular graphs, we obtain asymptotically tight results. Even for some static graphs, such as the cycle, our results improve the state of the art. Here we show that the expected number of rounds until all nodes have the same opinion is bounded by O(m/(dmin⋅ϕ))O(m/(d_{min} \cdot \phi)), for any graph with mm edges, conductance ϕ\phi, and degrees at least dmind_{min}. In addition, we consider a biased dynamic voter model, where each opinion ii is associated with a probability PiP_i, and when a node chooses a neighbour with that opinion, it adopts opinion ii with probability PiP_i (otherwise the node keeps its current opinion). We show for any regular dynamic graph, that if there is an Ï”>0\epsilon>0 difference between the highest and second highest opinion probabilities, and at least Ω(log⁥n)\Omega(\log n) nodes have initially the opinion with the highest probability, then all nodes adopt w.h.p. that opinion. We obtain a bound on the convergences time, which becomes O(log⁥n/ϕ)O(\log n/\phi) for static graphs

    Local majorities, coalitions and monopolies in graphs: a review

    Get PDF
    AbstractThis paper provides an overview of recent developments concerning the process of local majority voting in graphs, and its basic properties, from graph theoretic and algorithmic standpoints

    The Power of Two Choices in Distributed Voting

    Full text link
    Distributed voting is a fundamental topic in distributed computing. In pull voting, in each step every vertex chooses a neighbour uniformly at random, and adopts its opinion. The voting is completed when all vertices hold the same opinion. On many graph classes including regular graphs, pull voting requires Θ(n)\Theta(n) expected steps to complete, even if initially there are only two distinct opinions. In this paper we consider a related process which we call two-sample voting: every vertex chooses two random neighbours in each step. If the opinions of these neighbours coincide, then the vertex revises its opinion according to the chosen sample. Otherwise, it keeps its own opinion. We consider the performance of this process in the case where two different opinions reside on vertices of some (arbitrary) sets AA and BB, respectively. Here, ∣A∣+∣B∣=n|A| + |B| = n is the number of vertices of the graph. We show that there is a constant KK such that if the initial imbalance between the two opinions is ?Îœ0=(∣A∣−∣B∣)/n≄K(1/d)+(d/n)\nu_0 = (|A| - |B|)/n \geq K \sqrt{(1/d) + (d/n)}, then with high probability two sample voting completes in a random dd regular graph in O(log⁥n)O(\log n) steps and the initial majority opinion wins. We also show the same performance for any regular graph, if Îœ0≄Kλ2\nu_0 \geq K \lambda_2 where λ2\lambda_2 is the second largest eigenvalue of the transition matrix. In the graphs we consider, standard pull voting requires Ω(n)\Omega(n) steps, and the minority can still win with probability ∣B∣/n|B|/n.Comment: 22 page

    On Convergence and Threshold Properties of Discrete Lotka-Volterra Population Protocols

    Get PDF
    In this work we focus on a natural class of population protocols whose dynamics are modelled by the discrete version of Lotka-Volterra equations. In such protocols, when an agent aa of type (species) ii interacts with an agent bb of type (species) jj with aa as the initiator, then bb's type becomes ii with probability P_ijP\_{ij}. In such an interaction, we think of aa as the predator, bb as the prey, and the type of the prey is either converted to that of the predator or stays as is. Such protocols capture the dynamics of some opinion spreading models and generalize the well-known Rock-Paper-Scissors discrete dynamics. We consider the pairwise interactions among agents that are scheduled uniformly at random. We start by considering the convergence time and show that any Lotka-Volterra-type protocol on an nn-agent population converges to some absorbing state in time polynomial in nn, w.h.p., when any pair of agents is allowed to interact. By contrast, when the interaction graph is a star, even the Rock-Paper-Scissors protocol requires exponential time to converge. We then study threshold effects exhibited by Lotka-Volterra-type protocols with 3 and more species under interactions between any pair of agents. We start by presenting a simple 4-type protocol in which the probability difference of reaching the two possible absorbing states is strongly amplified by the ratio of the initial populations of the two other types, which are transient, but "control" convergence. We then prove that the Rock-Paper-Scissors protocol reaches each of its three possible absorbing states with almost equal probability, starting from any configuration satisfying some sub-linear lower bound on the initial size of each species. That is, Rock-Paper-Scissors is a realization of a "coin-flip consensus" in a distributed system. Some of our techniques may be of independent value

    Dynamics of Information Diffusion and Social Sensing

    Full text link
    Statistical inference using social sensors is an area that has witnessed remarkable progress and is relevant in applications including localizing events for targeted advertising, marketing, localization of natural disasters and predicting sentiment of investors in financial markets. This chapter presents a tutorial description of four important aspects of sensing-based information diffusion in social networks from a communications/signal processing perspective. First, diffusion models for information exchange in large scale social networks together with social sensing via social media networks such as Twitter is considered. Second, Bayesian social learning models and risk averse social learning is considered with applications in finance and online reputation systems. Third, the principle of revealed preferences arising in micro-economics theory is used to parse datasets to determine if social sensors are utility maximizers and then determine their utility functions. Finally, the interaction of social sensors with YouTube channel owners is studied using time series analysis methods. All four topics are explained in the context of actual experimental datasets from health networks, social media and psychological experiments. Also, algorithms are given that exploit the above models to infer underlying events based on social sensing. The overview, insights, models and algorithms presented in this chapter stem from recent developments in network science, economics and signal processing. At a deeper level, this chapter considers mean field dynamics of networks, risk averse Bayesian social learning filtering and quickest change detection, data incest in decision making over a directed acyclic graph of social sensors, inverse optimization problems for utility function estimation (revealed preferences) and statistical modeling of interacting social sensors in YouTube social networks.Comment: arXiv admin note: text overlap with arXiv:1405.112

    A Predictive Game Theoretic Model to Assess US - Russian Response to an Islamic Safe-Haven in the Caucasus Region

    Get PDF
    The thesis examines possible US and Russian policy decisions following the establishment of an Islamist safe-haven in Chechnya. Conflicting national policies affect the possibility of a negotiated settlement. Domestic and international political considerations constrain the decision-making of the two nations. The author applies game theory to examine the sequential decision-making of the two nations. The extensive form model draws outcome payoff values from a bounded uniform distribution. This approach naturally models uncertainty; and, it allows repeated probabilistic instantiations of the model. These instantiations produce a range of solutions. The most likely outcome was a negotiated settlement, generally following a tit-for-tat strategy. The second most likely outcome was a conflict initiated by the US. What-if scenarios were used to explore the model. The scenarios illustrate the flexibility of the model. The modeling approach developed in the thesis can be adapted to study other international conflicts. The quantitative data, outcome payoff ranges, was contrived by the author following an analysis of the literature. While the model developed in the thesis is repeatable, similar outcomes assume the would-be modeler is in analytical concurrence with the author. Thus, the development of unbiased preference indices is identified as an area for future consideration

    Distributed algorithms for hard real-time systems

    Get PDF
    viii+124hlm.;24c
    • 

    corecore