2,436 research outputs found

    Strings from Logic

    Get PDF
    What are strings made of? The possibility is discussed that strings are purely mathematical objects, made of logical axioms. More precisely, proofs in simple logical calculi are represented by graphs that can be interpreted as the Feynman diagrams of certain large-N field theories. Each vertex represents an axiom. Strings arise, because these large-N theories are dual to string theories. These ``logical quantum field theories'' map theorems into the space of functions of two parameters: N and the coupling constant. Undecidable theorems might be related to nonperturbative field theory effects.Comment: Talk, 19 pp, 7 figure

    Some new results on decidability for elementary algebra and geometry

    Get PDF
    We carry out a systematic study of decidability for theories of (a) real vector spaces, inner product spaces, and Hilbert spaces and (b) normed spaces, Banach spaces and metric spaces, all formalised using a 2-sorted first-order language. The theories for list (a) turn out to be decidable while the theories for list (b) are not even arithmetical: the theory of 2-dimensional Banach spaces, for example, has the same many-one degree as the set of truths of second-order arithmetic. We find that the purely universal and purely existential fragments of the theory of normed spaces are decidable, as is the AE fragment of the theory of metric spaces. These results are sharp of their type: reductions of Hilbert's 10th problem show that the EA fragments for metric and normed spaces and the AE fragment for normed spaces are all undecidable.Comment: 79 pages, 9 figures. v2: Numerous minor improvements; neater proofs of Theorems 8 and 29; v3: fixed subscripts in proof of Lemma 3

    Solvable (and unsolvable) cases of the decision problem for fragments of analysis

    Get PDF
    We survey two series of results concerning the decidability of fragments of Tarksi’s elementary algebra extended with one-argument functions which meet significant properties such as continuity, differentiability, or analyticity. One series of results regards the initial levels of a hierarchy of prenex sentences involving a single function symbol: in a number of cases, the decision problem for these sentences was solved in the positive by H. Friedman and A. Seress, who also proved that beyond two quantifier alternations decidability gets lost. The second series of results refers to merely existential sentences, but it brings into play an arbitrary number of functions, which are requested to be, over specified closed intervals, monotone increasing or decreasing, concave, or convex; any two such functions can be compared, and in one case, where each function is supposed to own continuous first derivative, their derivatives can be compared with real constants

    Are there new models of computation? Reply to Wegner and Eberbach

    Get PDF
    Wegner and Eberbach[Weg04b] have argued that there are fundamental limitations to Turing Machines as a foundation of computability and that these can be overcome by so-called superTuring models such as interaction machines, the [pi]calculus and the $-calculus. In this paper we contest Weger and Eberbach claims

    Programmability of Chemical Reaction Networks

    Get PDF
    Motivated by the intriguing complexity of biochemical circuitry within individual cells we study Stochastic Chemical Reaction Networks (SCRNs), a formal model that considers a set of chemical reactions acting on a finite number of molecules in a well-stirred solution according to standard chemical kinetics equations. SCRNs have been widely used for describing naturally occurring (bio)chemical systems, and with the advent of synthetic biology they become a promising language for the design of artificial biochemical circuits. Our interest here is the computational power of SCRNs and how they relate to more conventional models of computation. We survey known connections and give new connections between SCRNs and Boolean Logic Circuits, Vector Addition Systems, Petri Nets, Gate Implementability, Primitive Recursive Functions, Register Machines, Fractran, and Turing Machines. A theme to these investigations is the thin line between decidable and undecidable questions about SCRN behavior
    • …
    corecore