45,444 research outputs found

    Support vector machine for functional data classification

    Get PDF
    In many applications, input data are sampled functions taking their values in infinite dimensional spaces rather than standard vectors. This fact has complex consequences on data analysis algorithms that motivate modifications of them. In fact most of the traditional data analysis tools for regression, classification and clustering have been adapted to functional inputs under the general name of functional Data Analysis (FDA). In this paper, we investigate the use of Support Vector Machines (SVMs) for functional data analysis and we focus on the problem of curves discrimination. SVMs are large margin classifier tools based on implicit non linear mappings of the considered data into high dimensional spaces thanks to kernels. We show how to define simple kernels that take into account the unctional nature of the data and lead to consistent classification. Experiments conducted on real world data emphasize the benefit of taking into account some functional aspects of the problems.Comment: 13 page

    Security Evaluation of Support Vector Machines in Adversarial Environments

    Full text link
    Support Vector Machines (SVMs) are among the most popular classification techniques adopted in security applications like malware detection, intrusion detection, and spam filtering. However, if SVMs are to be incorporated in real-world security systems, they must be able to cope with attack patterns that can either mislead the learning algorithm (poisoning), evade detection (evasion), or gain information about their internal parameters (privacy breaches). The main contributions of this chapter are twofold. First, we introduce a formal general framework for the empirical evaluation of the security of machine-learning systems. Second, according to our framework, we demonstrate the feasibility of evasion, poisoning and privacy attacks against SVMs in real-world security problems. For each attack technique, we evaluate its impact and discuss whether (and how) it can be countered through an adversary-aware design of SVMs. Our experiments are easily reproducible thanks to open-source code that we have made available, together with all the employed datasets, on a public repository.Comment: 47 pages, 9 figures; chapter accepted into book 'Support Vector Machine Applications

    Selecting Near-Optimal Learners via Incremental Data Allocation

    Full text link
    We study a novel machine learning (ML) problem setting of sequentially allocating small subsets of training data amongst a large set of classifiers. The goal is to select a classifier that will give near-optimal accuracy when trained on all data, while also minimizing the cost of misallocated samples. This is motivated by large modern datasets and ML toolkits with many combinations of learning algorithms and hyper-parameters. Inspired by the principle of "optimism under uncertainty," we propose an innovative strategy, Data Allocation using Upper Bounds (DAUB), which robustly achieves these objectives across a variety of real-world datasets. We further develop substantial theoretical support for DAUB in an idealized setting where the expected accuracy of a classifier trained on nn samples can be known exactly. Under these conditions we establish a rigorous sub-linear bound on the regret of the approach (in terms of misallocated data), as well as a rigorous bound on suboptimality of the selected classifier. Our accuracy estimates using real-world datasets only entail mild violations of the theoretical scenario, suggesting that the practical behavior of DAUB is likely to approach the idealized behavior.Comment: AAAI-2016: The Thirtieth AAAI Conference on Artificial Intelligenc

    Stratification bias in low signal microarray studies

    Get PDF
    BACKGROUND: When analysing microarray and other small sample size biological datasets, care is needed to avoid various biases. We analyse a form of bias, stratification bias, that can substantially affect analyses using sample-reuse validation techniques and lead to inaccurate results. This bias is due to imperfect stratification of samples in the training and test sets and the dependency between these stratification errors, i.e. the variations in class proportions in the training and test sets are negatively correlated. RESULTS: We show that when estimating the performance of classifiers on low signal datasets (i.e. those which are difficult to classify), which are typical of many prognostic microarray studies, commonly used performance measures can suffer from a substantial negative bias. For error rate this bias is only severe in quite restricted situations, but can be much larger and more frequent when using ranking measures such as the receiver operating characteristic (ROC) curve and area under the ROC (AUC). Substantial biases are shown in simulations and on the van 't Veer breast cancer dataset. The classification error rate can have large negative biases for balanced datasets, whereas the AUC shows substantial pessimistic biases even for imbalanced datasets. In simulation studies using 10-fold cross-validation, AUC values of less than 0.3 can be observed on random datasets rather than the expected 0.5. Further experiments on the van 't Veer breast cancer dataset show these biases exist in practice. CONCLUSION: Stratification bias can substantially affect several performance measures. In computing the AUC, the strategy of pooling the test samples from the various folds of cross-validation can lead to large biases; computing it as the average of per-fold estimates avoids this bias and is thus the recommended approach. As a more general solution applicable to other performance measures, we show that stratified repeated holdout and a modified version of k-fold cross-validation, balanced, stratified cross-validation and balanced leave-one-out cross-validation, avoids the bias. Therefore for model selection and evaluation of microarray and other small biological datasets, these methods should be used and unstratified versions avoided. In particular, the commonly used (unbalanced) leave-one-out cross-validation should not be used to estimate AUC for small datasets

    Fast DD-classification of functional data

    Full text link
    A fast nonparametric procedure for classifying functional data is introduced. It consists of a two-step transformation of the original data plus a classifier operating on a low-dimensional hypercube. The functional data are first mapped into a finite-dimensional location-slope space and then transformed by a multivariate depth function into the DDDD-plot, which is a subset of the unit hypercube. This transformation yields a new notion of depth for functional data. Three alternative depth functions are employed for this, as well as two rules for the final classification on [0,1]q[0,1]^q. The resulting classifier has to be cross-validated over a small range of parameters only, which is restricted by a Vapnik-Cervonenkis bound. The entire methodology does not involve smoothing techniques, is completely nonparametric and allows to achieve Bayes optimality under standard distributional settings. It is robust, efficiently computable, and has been implemented in an R environment. Applicability of the new approach is demonstrated by simulations as well as a benchmark study
    corecore