31,884 research outputs found

    Dynamic modeling of mean-reverting spreads for statistical arbitrage

    Full text link
    Statistical arbitrage strategies, such as pairs trading and its generalizations, rely on the construction of mean-reverting spreads enjoying a certain degree of predictability. Gaussian linear state-space processes have recently been proposed as a model for such spreads under the assumption that the observed process is a noisy realization of some hidden states. Real-time estimation of the unobserved spread process can reveal temporary market inefficiencies which can then be exploited to generate excess returns. Building on previous work, we embrace the state-space framework for modeling spread processes and extend this methodology along three different directions. First, we introduce time-dependency in the model parameters, which allows for quick adaptation to changes in the data generating process. Second, we provide an on-line estimation algorithm that can be constantly run in real-time. Being computationally fast, the algorithm is particularly suitable for building aggressive trading strategies based on high-frequency data and may be used as a monitoring device for mean-reversion. Finally, our framework naturally provides informative uncertainty measures of all the estimated parameters. Experimental results based on Monte Carlo simulations and historical equity data are discussed, including a co-integration relationship involving two exchange-traded funds.Comment: 34 pages, 6 figures. Submitte

    Cliques and duplication-divergence network growth

    Full text link
    A population of complete subgraphs or cliques in a network evolving via duplication-divergence is considered. We find that a number of cliques of each size scales linearly with the size of the network. We also derive a clique population distribution that is in perfect agreement with both the simulation results and the clique statistic of the protein-protein binding network of the fruit fly. In addition, we show that such features as fat-tail degree distribution, various rates of average degree growth and non-averaging, revealed recently for only the particular case of a completely asymmetric divergence, are present in a general case of arbitrary divergence.Comment: 7 pages, 6 figure

    Revlex-Initial 0/1-Polytopes

    Full text link
    We introduce revlex-initial 0/1-polytopes as the convex hulls of reverse-lexicographically initial subsets of 0/1-vectors. These polytopes are special knapsack-polytopes. It turns out that they have remarkable extremal properties. In particular, we use these polytopes in order to prove that the minimum numbers f(d, n) of facets and the minimum average degree a(d, n) of the graph of a d-dimensional 0/1-polytope with n vertices satisfy f(d, n) <= 3d and a(d, n) <= d + 4. We furthermore show that, despite the sparsity of their graphs, revlex-initial 0/1-polytopes satisfy a conjecture due to Mihail and Vazirani, claiming that the graphs of 0/1-polytopes have edge-expansion at least one.Comment: Accepted for publication in J. Comb. Theory Ser. A; 24 pages; simplified proof of Theorem 1; corrected and improved version of Theorem 4 (the average degree is now bounded by d+4 instead of d+8); several minor corrections suggested by the referee
    corecore