9,254 research outputs found

    Impulsive mean square exponential synchronization of stochastic dynamical networks with hybrid time-varying delays

    Get PDF
    This paper investigates the mean square exponential synchronization problem for complex dynamical networks with stochastic disturbances and hybrid time-varying delays, both internal delay and coupling delay are considered in the model. At the same time, the coupled time-delay is also probabilistic in two time interval. Impulsive control method is applied to force all nodes synchronize to a chaotic orbit, and impulsive input delay is also taken into account. Based on the theory of stochastic differential equation, an impulsive differential inequality and some analysis techniques, several simple and useful criteria are derived to ensure mean square exponential synchronization of the stochastic dynamical networks. Furthermore, pinning impulsive strategy is studied. An effective method is introduced to select the controlled nodes at each impulsive constants. Numerical simulations are exploited to demonstrate the effectiveness of the theory results in this paper

    Mathematical problems for complex networks

    Get PDF
    Copyright @ 2012 Zidong Wang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. This article is made available through the Brunel Open Access Publishing Fund.Complex networks do exist in our lives. The brain is a neural network. The global economy is a network of national economies. Computer viruses routinely spread through the Internet. Food-webs, ecosystems, and metabolic pathways can be represented by networks. Energy is distributed through transportation networks in living organisms, man-made infrastructures, and other physical systems. Dynamic behaviors of complex networks, such as stability, periodic oscillation, bifurcation, or even chaos, are ubiquitous in the real world and often reconfigurable. Networks have been studied in the context of dynamical systems in a range of disciplines. However, until recently there has been relatively little work that treats dynamics as a function of network structure, where the states of both the nodes and the edges can change, and the topology of the network itself often evolves in time. Some major problems have not been fully investigated, such as the behavior of stability, synchronization and chaos control for complex networks, as well as their applications in, for example, communication and bioinformatics

    A Time-Varying Complex Dynamical Network Model And Its Controlled Synchronization Criteria

    Full text link
    Today, complex networks have attracted increasing attention from various fields of science and engineering. It has been demonstrated that many complex networks display various synchronization phenomena. In this paper, we introduce a time-varying complex dynamical network model. We then further investigate its synchronization phenomenon and prove several network synchronization theorems. Especially, we show that synchronization of such a time-varying dynamical network is completely determined by the inner-coupling matrix, and the eigenvalues and the corresponding eigenvectors of the coupling configuration matrix of the network.Comment: 13 page

    Global synchronization for discrete-time stochastic complex networks with randomly occurred nonlinearities and mixed time delays

    Get PDF
    Copyright [2010] IEEE. This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of Brunel University's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to [email protected]. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.In this paper, the problem of stochastic synchronization analysis is investigated for a new array of coupled discrete-time stochastic complex networks with randomly occurred nonlinearities (RONs) and time delays. The discrete-time complex networks under consideration are subject to: (1) stochastic nonlinearities that occur according to the Bernoulli distributed white noise sequences; (2) stochastic disturbances that enter the coupling term, the delayed coupling term as well as the overall network; and (3) time delays that include both the discrete and distributed ones. Note that the newly introduced RONs and the multiple stochastic disturbances can better reflect the dynamical behaviors of coupled complex networks whose information transmission process is affected by a noisy environment (e.g., Internet-based control systems). By constructing a novel Lyapunov-like matrix functional, the idea of delay fractioning is applied to deal with the addressed synchronization analysis problem. By employing a combination of the linear matrix inequality (LMI) techniques, the free-weighting matrix method and stochastic analysis theories, several delay-dependent sufficient conditions are obtained which ensure the asymptotic synchronization in the mean square sense for the discrete-time stochastic complex networks with time delays. The criteria derived are characterized in terms of LMIs whose solution can be solved by utilizing the standard numerical software. A simulation example is presented to show the effectiveness and applicability of the proposed results
    • …
    corecore