7,350 research outputs found

    Wasserstein Introspective Neural Networks

    Full text link
    We present Wasserstein introspective neural networks (WINN) that are both a generator and a discriminator within a single model. WINN provides a significant improvement over the recent introspective neural networks (INN) method by enhancing INN's generative modeling capability. WINN has three interesting properties: (1) A mathematical connection between the formulation of the INN algorithm and that of Wasserstein generative adversarial networks (WGAN) is made. (2) The explicit adoption of the Wasserstein distance into INN results in a large enhancement to INN, achieving compelling results even with a single classifier --- e.g., providing nearly a 20 times reduction in model size over INN for unsupervised generative modeling. (3) When applied to supervised classification, WINN also gives rise to improved robustness against adversarial examples in terms of the error reduction. In the experiments, we report encouraging results on unsupervised learning problems including texture, face, and object modeling, as well as a supervised classification task against adversarial attacks.Comment: Accepted to CVPR 2018 (Oral

    Sequential Circuit Design for Embedded Cryptographic Applications Resilient to Adversarial Faults

    Get PDF
    In the relatively young field of fault-tolerant cryptography, the main research effort has focused exclusively on the protection of the data path of cryptographic circuits. To date, however, we have not found any work that aims at protecting the control logic of these circuits against fault attacks, which thus remains the proverbial Achilles’ heel. Motivated by a hypothetical yet realistic fault analysis attack that, in principle, could be mounted against any modular exponentiation engine, even one with appropriate data path protection, we set out to close this remaining gap. In this paper, we present guidelines for the design of multifault-resilient sequential control logic based on standard Error-Detecting Codes (EDCs) with large minimum distance. We introduce a metric that measures the effectiveness of the error detection technique in terms of the effort the attacker has to make in relation to the area overhead spent in implementing the EDC. Our comparison shows that the proposed EDC-based technique provides superior performance when compared against regular N-modular redundancy techniques. Furthermore, our technique scales well and does not affect the critical path delay

    Adapting Sequence to Sequence models for Text Normalization in Social Media

    Full text link
    Social media offer an abundant source of valuable raw data, however informal writing can quickly become a bottleneck for many natural language processing (NLP) tasks. Off-the-shelf tools are usually trained on formal text and cannot explicitly handle noise found in short online posts. Moreover, the variety of frequently occurring linguistic variations presents several challenges, even for humans who might not be able to comprehend the meaning of such posts, especially when they contain slang and abbreviations. Text Normalization aims to transform online user-generated text to a canonical form. Current text normalization systems rely on string or phonetic similarity and classification models that work on a local fashion. We argue that processing contextual information is crucial for this task and introduce a social media text normalization hybrid word-character attention-based encoder-decoder model that can serve as a pre-processing step for NLP applications to adapt to noisy text in social media. Our character-based component is trained on synthetic adversarial examples that are designed to capture errors commonly found in online user-generated text. Experiments show that our model surpasses neural architectures designed for text normalization and achieves comparable performance with state-of-the-art related work.Comment: Accepted at the 13th International AAAI Conference on Web and Social Media (ICWSM 2019

    Self-imitating Feedback Generation Using GAN for Computer-Assisted Pronunciation Training

    Full text link
    Self-imitating feedback is an effective and learner-friendly method for non-native learners in Computer-Assisted Pronunciation Training. Acoustic characteristics in native utterances are extracted and transplanted onto learner's own speech input, and given back to the learner as a corrective feedback. Previous works focused on speech conversion using prosodic transplantation techniques based on PSOLA algorithm. Motivated by the visual differences found in spectrograms of native and non-native speeches, we investigated applying GAN to generate self-imitating feedback by utilizing generator's ability through adversarial training. Because this mapping is highly under-constrained, we also adopt cycle consistency loss to encourage the output to preserve the global structure, which is shared by native and non-native utterances. Trained on 97,200 spectrogram images of short utterances produced by native and non-native speakers of Korean, the generator is able to successfully transform the non-native spectrogram input to a spectrogram with properties of self-imitating feedback. Furthermore, the transformed spectrogram shows segmental corrections that cannot be obtained by prosodic transplantation. Perceptual test comparing the self-imitating and correcting abilities of our method with the baseline PSOLA method shows that the generative approach with cycle consistency loss is promising
    corecore