5,366 research outputs found

    Some results on chromatic number as a function of triangle count

    Full text link
    A variety of powerful extremal results have been shown for the chromatic number of triangle-free graphs. Three noteworthy bounds are in terms of the number of vertices, edges, and maximum degree given by Poljak \& Tuza (1994), and Johansson. There have been comparatively fewer works extending these types of bounds to graphs with a small number of triangles. One noteworthy exception is a result of Alon et. al (1999) bounding the chromatic number for graphs with low degree and few triangles per vertex; this bound is nearly the same as for triangle-free graphs. This type of parametrization is much less rigid, and has appeared in dozens of combinatorial constructions. In this paper, we show a similar type of result for χ(G)\chi(G) as a function of the number of vertices nn, the number of edges mm, as well as the triangle count (both local and global measures). Our results smoothly interpolate between the generic bounds true for all graphs and bounds for triangle-free graphs. Our results are tight for most of these cases; we show how an open problem regarding fractional chromatic number and degeneracy in triangle-free graphs can resolve the small remaining gap in our bounds

    Boolean complexes for Ferrers graphs

    Full text link
    In this paper we provide an explicit formula for calculating the boolean number of a Ferrers graph. By previous work of the last two authors, this determines the homotopy type of the boolean complex of the graph. Specializing to staircase shapes, we show that the boolean numbers of the associated Ferrers graphs are the Genocchi numbers of the second kind, and obtain a relation between the Legendre-Stirling numbers and the Genocchi numbers of the second kind. In another application, we compute the boolean number of a complete bipartite graph, corresponding to a rectangular Ferrers shape, which is expressed in terms of the Stirling numbers of the second kind. Finally, we analyze the complexity of calculating the boolean number of a Ferrers graph using these results and show that it is a significant improvement over calculating by edge recursion.Comment: final version, to appear in the The Australasian Journal of Combinatoric

    On the Chromatic Thresholds of Hypergraphs

    Full text link
    Let F be a family of r-uniform hypergraphs. The chromatic threshold of F is the infimum of all non-negative reals c such that the subfamily of F comprising hypergraphs H with minimum degree at least c(∣V(H)∣r−1)c \binom{|V(H)|}{r-1} has bounded chromatic number. This parameter has a long history for graphs (r=2), and in this paper we begin its systematic study for hypergraphs. {\L}uczak and Thomass\'e recently proved that the chromatic threshold of the so-called near bipartite graphs is zero, and our main contribution is to generalize this result to r-uniform hypergraphs. For this class of hypergraphs, we also show that the exact Tur\'an number is achieved uniquely by the complete (r+1)-partite hypergraph with nearly equal part sizes. This is one of very few infinite families of nondegenerate hypergraphs whose Tur\'an number is determined exactly. In an attempt to generalize Thomassen's result that the chromatic threshold of triangle-free graphs is 1/3, we prove bounds for the chromatic threshold of the family of 3-uniform hypergraphs not containing {abc, abd, cde}, the so-called generalized triangle. In order to prove upper bounds we introduce the concept of fiber bundles, which can be thought of as a hypergraph analogue of directed graphs. This leads to the notion of fiber bundle dimension, a structural property of fiber bundles that is based on the idea of Vapnik-Chervonenkis dimension in hypergraphs. Our lower bounds follow from explicit constructions, many of which use a hypergraph analogue of the Kneser graph. Using methods from extremal set theory, we prove that these Kneser hypergraphs have unbounded chromatic number. This generalizes a result of Szemer\'edi for graphs and might be of independent interest. Many open problems remain.Comment: 37 pages, 4 figure

    Coloring decompositions of complete geometric graphs

    Get PDF
    A decomposition of a non-empty simple graph GG is a pair [G,P][G,P], such that PP is a set of non-empty induced subgraphs of GG, and every edge of GG belongs to exactly one subgraph in PP. The chromatic index χ′([G,P])\chi'([G,P]) of a decomposition [G,P][G,P] is the smallest number kk for which there exists a kk-coloring of the elements of PP in such a way that: for every element of PP all of its edges have the same color, and if two members of PP share at least one vertex, then they have different colors. A long standing conjecture of Erd\H{o}s-Faber-Lov\'asz states that every decomposition [Kn,P][K_n,P] of the complete graph KnK_n satisfies χ′([Kn,P])≤n\chi'([K_n,P])\leq n. In this paper we work with geometric graphs, and inspired by this formulation of the conjecture, we introduce the concept of chromatic index of a decomposition of the complete geometric graph. We present bounds for the chromatic index of several types of decompositions when the vertices of the graph are in general position. We also consider the particular case in which the vertices are in convex position and present bounds for the chromatic index of a few types of decompositions.Comment: 18 pages, 5 figure

    Distance colouring without one cycle length

    Get PDF
    We consider distance colourings in graphs of maximum degree at most dd and how excluding one fixed cycle length ℓ\ell affects the number of colours required as d→∞d\to\infty. For vertex-colouring and t≥1t\ge 1, if any two distinct vertices connected by a path of at most tt edges are required to be coloured differently, then a reduction by a logarithmic (in dd) factor against the trivial bound O(dt)O(d^t) can be obtained by excluding an odd cycle length ℓ≥3t\ell \ge 3t if tt is odd or by excluding an even cycle length ℓ≥2t+2\ell \ge 2t+2. For edge-colouring and t≥2t\ge 2, if any two distinct edges connected by a path of fewer than tt edges are required to be coloured differently, then excluding an even cycle length ℓ≥2t\ell \ge 2t is sufficient for a logarithmic factor reduction. For t≥2t\ge 2, neither of the above statements are possible for other parity combinations of ℓ\ell and tt. These results can be considered extensions of results due to Johansson (1996) and Mahdian (2000), and are related to open problems of Alon and Mohar (2002) and Kaiser and Kang (2014).Comment: 14 pages, 1 figur

    Note on the number of edges in families with linear union-complexity

    Full text link
    We give a simple argument showing that the number of edges in the intersection graph GG of a family of nn sets in the plane with a linear union-complexity is O(ω(G)n)O(\omega(G)n). In particular, we prove χ(G)≤col(G)<19ω(G)\chi(G)\leq \text{col}(G)< 19\omega(G) for intersection graph GG of a family of pseudo-discs, which improves a previous bound.Comment: background and related work is now more complete; presentation improve

    Empty monochromatic simplices

    Get PDF
    Let S be a k-colored (finite) set of n points in , da parts per thousand yen3, in general position, that is, no (d+1) points of S lie in a common (d-1)-dimensional hyperplane. We count the number of empty monochromatic d-simplices determined by S, that is, simplices which have only points from one color class of S as vertices and no points of S in their interior. For 3a parts per thousand currency signka parts per thousand currency signd we provide a lower bound of and strengthen this to Omega(n (d-2/3)) for k=2.; On the way we provide various results on triangulations of point sets in . In particular, for any constant dimension da parts per thousand yen3, we prove that every set of n points (n sufficiently large), in general position in , admits a triangulation with at least dn+Omega(logn) simplices.Postprint (author’s final draft
    • …
    corecore