18,736 research outputs found

    On the complexity of computing Kronecker coefficients

    Full text link
    We study the complexity of computing Kronecker coefficients g(λ,μ,ν)g(\lambda,\mu,\nu). We give explicit bounds in terms of the number of parts \ell in the partitions, their largest part size NN and the smallest second part MM of the three partitions. When M=O(1)M = O(1), i.e. one of the partitions is hook-like, the bounds are linear in logN\log N, but depend exponentially on \ell. Moreover, similar bounds hold even when M=eO()M=e^{O(\ell)}. By a separate argument, we show that the positivity of Kronecker coefficients can be decided in O(logN)O(\log N) time for a bounded number \ell of parts and without restriction on MM. Related problems of computing Kronecker coefficients when one partition is a hook, and computing characters of SnS_n are also considered.Comment: v3: incorporated referee's comments; accepted to Computational Complexit

    Novel Approach to Real Polynomial Root-finding and Matrix Eigen-solving

    Full text link
    Univariate polynomial root-finding is both classical and important for modern computing. Frequently one seeks just the real roots of a polynomial with real coefficients. They can be approximated at a low computational cost if the polynomial has no nonreal roots, but typically nonreal roots are much more numerous than the real ones. We dramatically accelerate the known algorithms in this case by exploiting the correlation between the computations with matrices and polynomials, extending the techniques of the matrix sign iteration, and exploiting the structure of the companion matrix of the input polynomial. We extend some of the proposed techniques to the approximation of the real eigenvalues of a real nonsymmetric matrix.Comment: 17 pages, added algorithm

    Reductions of Young tableau bijections

    Full text link
    We introduce notions of linear reduction and linear equivalence of bijections for the purposes of study bijections between Young tableaux. Originating in Theoretical Computer Science, these notions allow us to give a unified view of a number of classical bijections, and establish formal connections between them.Comment: 42 pages, 15 figure
    corecore