141 research outputs found

    Merging the A- and Q-spectral theories

    Full text link
    Let GG be a graph with adjacency matrix A(G)A\left( G\right) , and let D(G)D\left( G\right) be the diagonal matrix of the degrees of G.G. The signless Laplacian Q(G)Q\left( G\right) of GG is defined as Q(G):=A(G)+D(G)Q\left( G\right) :=A\left( G\right) +D\left( G\right) . Cvetkovi\'{c} called the study of the adjacency matrix the AA% \textit{-spectral theory}, and the study of the signless Laplacian--the QQ\textit{-spectral theory}. During the years many similarities and differences between these two theories have been established. To track the gradual change of A(G)A\left( G\right) into Q(G)Q\left( G\right) in this paper it is suggested to study the convex linear combinations AĪ±(G)A_{\alpha }\left( G\right) of A(G)A\left( G\right) and D(G)D\left( G\right) defined by AĪ±(G):=Ī±D(G)+(1āˆ’Ī±)A(G),Ā Ā Ā 0ā‰¤Ī±ā‰¤1. A_{\alpha}\left( G\right) :=\alpha D\left( G\right) +\left( 1-\alpha\right) A\left( G\right) \text{, \ \ }0\leq\alpha\leq1. This study sheds new light on A(G)A\left( G\right) and Q(G)Q\left( G\right) , and yields some surprises, in particular, a novel spectral Tur\'{a}n theorem. A number of challenging open problems are discussed.Comment: 26 page

    Which graphs are determined by their spectrum?.

    Get PDF

    The extremal spectral radii of kk-uniform supertrees

    Full text link
    In this paper, we study some extremal problems of three kinds of spectral radii of kk-uniform hypergraphs (the adjacency spectral radius, the signless Laplacian spectral radius and the incidence QQ-spectral radius). We call a connected and acyclic kk-uniform hypergraph a supertree. We introduce the operation of "moving edges" for hypergraphs, together with the two special cases of this operation: the edge-releasing operation and the total grafting operation. By studying the perturbation of these kinds of spectral radii of hypergraphs under these operations, we prove that for all these three kinds of spectral radii, the hyperstar Sn,k\mathcal{S}_{n,k} attains uniquely the maximum spectral radius among all kk-uniform supertrees on nn vertices. We also determine the unique kk-uniform supertree on nn vertices with the second largest spectral radius (for these three kinds of spectral radii). We also prove that for all these three kinds of spectral radii, the loose path Pn,k\mathcal{P}_{n,k} attains uniquely the minimum spectral radius among all kk-th power hypertrees of nn vertices. Some bounds on the incidence QQ-spectral radius are given. The relation between the incidence QQ-spectral radius and the spectral radius of the matrix product of the incidence matrix and its transpose is discussed
    • ā€¦
    corecore