230,381 research outputs found

    Some Recent Advances in Network Flows

    Get PDF
    The literature on network flow problems is extensive, and over the past 40 years researchers have made continuous improvements to algorithms for solving several classes of problems. However, the surge of activity on the algorithmic aspects of network flow problems over the past few years has been particularly striking. Several techniques have proven to be very successful in permitting researchers to make these recent contributions: (i) scaling of the problem data; (ii) improved analysis of algorithms, especially amortized average case performance and the use of potential functions; and (iii) enhanced data structures. In this survey, we illustrate some of these techniques and their usefulness in developing faster network flow algorithms. Our discussion focuses on the design of faster algorithms from the worst case perspective and we limit our discussion to the following fundamental problems: the shortest path problem, the maximum flow problem, and the minimum cost flow problem. We consider several representative algorithms from each problem class including the radix heap algorithm for the shortest path problem, preflow push algorithms for the maximum flow problem, and the pseudoflow push algorithms for the minimum cost flow problem

    Optimization Based Rate Control for Multicast with Network Coding

    Get PDF
    Recent advances in network coding have shown great potential for efficient information multicasting in communication networks, in terms of both network throughput and network management. In this paper, we address the problem of rate control at end-systems for network coding based multicast flows. We develop two adaptive rate control algorithms for the networks with given coding subgraphs and without given coding subgraphs, respectively. With random network coding, both algorithms can be implemented in a distributed manner, and work at transport layer to adjust source rates and at network layer to carry out network coding. We prove that the proposed algorithms converge to the globally optimal solutions for intrasession network coding. Some related issues are discussed, and numerical examples are provided to complement our theoretical analysis

    Active region flows

    Get PDF
    A wide range of observations has shown that active region phenomena in the photospheric, chromospheric and coronal temperature regimes are dynamical in nature. At the photosphere, recent observations of full line profiles place an upper limit of about + or - 20/msec on any downflows at supergranule cell edges. Observations of the full Stokes 5 profiles in the network show no evidence for downflows in magnetic flux tubes. In the area of chromospheric dynamics, several models were put forward recently to reproduce the observed behavior of spicules. However, it is pointed out that these adiabatic models do not include the powerful radiative dissipation which tend to damp out the large amplitude disturbances that produce the spicular acceleration in the models. In the corona, loop flows along field lines clearly transport mass and energy at rates important for the dynamics of these structures. However, advances in understanding the heating and mass balance of the loop structures seem to require new kinds of observations. Some results are presented using a remote sensing diagnostic of the intensity and orientation of macroscopic plasma electric fields predicted by models of reconnective heating and also wave heating

    An integrated method for short-term prediction of road traffic conditions for intelligent transportation systems applications

    Get PDF
    The paper deals with the short-term prediction of road traffic conditions within Intelligent Transportation Systems applications. First, the problem of traffic modeling and the potential of different traffic monitoring technologies are discussed. Then, an integrated method for short-term traffic prediction is presented, which integrates an Artificial Neural Network predictor that forecasts future states in standard conditions, an anomaly detection module that exploits floating car data to individuate possible occurrences of anomalous traffic conditions, and a macroscopic traffic model that predicts speeds and queue progressions in case of anomalies. Results of offline applications on a primary Italian motorway are presented

    Machine Learning for Fluid Mechanics

    Full text link
    The field of fluid mechanics is rapidly advancing, driven by unprecedented volumes of data from field measurements, experiments and large-scale simulations at multiple spatiotemporal scales. Machine learning offers a wealth of techniques to extract information from data that could be translated into knowledge about the underlying fluid mechanics. Moreover, machine learning algorithms can augment domain knowledge and automate tasks related to flow control and optimization. This article presents an overview of past history, current developments, and emerging opportunities of machine learning for fluid mechanics. It outlines fundamental machine learning methodologies and discusses their uses for understanding, modeling, optimizing, and controlling fluid flows. The strengths and limitations of these methods are addressed from the perspective of scientific inquiry that considers data as an inherent part of modeling, experimentation, and simulation. Machine learning provides a powerful information processing framework that can enrich, and possibly even transform, current lines of fluid mechanics research and industrial applications.Comment: To appear in the Annual Reviews of Fluid Mechanics, 202
    corecore