3,497 research outputs found

    On the Complexity of Nonrecursive XQuery and Functional Query Languages on Complex Values

    Full text link
    This paper studies the complexity of evaluating functional query languages for complex values such as monad algebra and the recursion-free fragment of XQuery. We show that monad algebra with equality restricted to atomic values is complete for the class TA[2^{O(n)}, O(n)] of problems solvable in linear exponential time with a linear number of alternations. The monotone fragment of monad algebra with atomic value equality but without negation is complete for nondeterministic exponential time. For monad algebra with deep equality, we establish TA[2^{O(n)}, O(n)] lower and exponential-space upper bounds. Then we study a fragment of XQuery, Core XQuery, that seems to incorporate all the features of a query language on complex values that are traditionally deemed essential. A close connection between monad algebra on lists and Core XQuery (with ``child'' as the only axis) is exhibited, and it is shown that these languages are expressively equivalent up to representation issues. We show that Core XQuery is just as hard as monad algebra w.r.t. combined complexity, and that it is in TC0 if the query is assumed fixed.Comment: Long version of PODS 2005 pape

    Evaluating Datalog via Tree Automata and Cycluits

    Full text link
    We investigate parameterizations of both database instances and queries that make query evaluation fixed-parameter tractable in combined complexity. We show that clique-frontier-guarded Datalog with stratified negation (CFG-Datalog) enjoys bilinear-time evaluation on structures of bounded treewidth for programs of bounded rule size. Such programs capture in particular conjunctive queries with simplicial decompositions of bounded width, guarded negation fragment queries of bounded CQ-rank, or two-way regular path queries. Our result is shown by translating to alternating two-way automata, whose semantics is defined via cyclic provenance circuits (cycluits) that can be tractably evaluated.Comment: 56 pages, 63 references. Journal version of "Combined Tractability of Query Evaluation via Tree Automata and Cycluits (Extended Version)" at arXiv:1612.04203. Up to the stylesheet, page/environment numbering, and possible minor publisher-induced changes, this is the exact content of the journal paper that will appear in Theory of Computing Systems. Update wrt version 1: latest reviewer feedbac

    The Bag Semantics of Ontology-Based Data Access

    Full text link
    Ontology-based data access (OBDA) is a popular approach for integrating and querying multiple data sources by means of a shared ontology. The ontology is linked to the sources using mappings, which assign views over the data to ontology predicates. Motivated by the need for OBDA systems supporting database-style aggregate queries, we propose a bag semantics for OBDA, where duplicate tuples in the views defined by the mappings are retained, as is the case in standard databases. We show that bag semantics makes conjunctive query answering in OBDA coNP-hard in data complexity. To regain tractability, we consider a rather general class of queries and show its rewritability to a generalisation of the relational calculus to bags
    corecore