55,967 research outputs found

    A statistical multiresolution approach for face recognition using structural hidden Markov models

    Get PDF
    This paper introduces a novel methodology that combines the multiresolution feature of the discrete wavelet transform (DWT) with the local interactions of the facial structures expressed through the structural hidden Markov model (SHMM). A range of wavelet filters such as Haar, biorthogonal 9/7, and Coiflet, as well as Gabor, have been implemented in order to search for the best performance. SHMMs perform a thorough probabilistic analysis of any sequential pattern by revealing both its inner and outer structures simultaneously. Unlike traditional HMMs, the SHMMs do not perform the state conditional independence of the visible observation sequence assumption. This is achieved via the concept of local structures introduced by the SHMMs. Therefore, the long-range dependency problem inherent to traditional HMMs has been drastically reduced. SHMMs have not previously been applied to the problem of face identification. The results reported in this application have shown that SHMM outperforms the traditional hidden Markov model with a 73% increase in accuracy

    The mechanics of trust: a framework for research and design

    Get PDF
    With an increasing number of technologies supporting transactions over distance and replacing traditional forms of interaction, designing for trust in mediated interactions has become a key concern for researchers in human computer interaction (HCI). While much of this research focuses on increasing users’ trust, we present a framework that shifts the perspective towards factors that support trustworthy behavior. In a second step, we analyze how the presence of these factors can be signalled. We argue that it is essential to take a systemic perspective for enabling well-placed trust and trustworthy behavior in the long term. For our analysis we draw on relevant research from sociology, economics, and psychology, as well as HCI. We identify contextual properties (motivation based on temporal, social, and institutional embeddedness) and the actor's intrinsic properties (ability, and motivation based on internalized norms and benevolence) that form the basis of trustworthy behavior. Our analysis provides a frame of reference for the design of studies on trust in technology-mediated interactions, as well as a guide for identifying trust requirements in design processes. We demonstrate the application of the framework in three scenarios: call centre interactions, B2C e-commerce, and voice-enabled on-line gaming

    Linear Shape Deformation Models with Local Support Using Graph-based Structured Matrix Factorisation

    Get PDF
    Representing 3D shape deformations by linear models in high-dimensional space has many applications in computer vision and medical imaging, such as shape-based interpolation or segmentation. Commonly, using Principal Components Analysis a low-dimensional (affine) subspace of the high-dimensional shape space is determined. However, the resulting factors (the most dominant eigenvectors of the covariance matrix) have global support, i.e. changing the coefficient of a single factor deforms the entire shape. In this paper, a method to obtain deformation factors with local support is presented. The benefits of such models include better flexibility and interpretability as well as the possibility of interactively deforming shapes locally. For that, based on a well-grounded theoretical motivation, we formulate a matrix factorisation problem employing sparsity and graph-based regularisation terms. We demonstrate that for brain shapes our method outperforms the state of the art in local support models with respect to generalisation ability and sparse shape reconstruction, whereas for human body shapes our method gives more realistic deformations.Comment: Please cite CVPR 2016 versio

    A nonparametric empirical Bayes approach to covariance matrix estimation

    Full text link
    We propose an empirical Bayes method to estimate high-dimensional covariance matrices. Our procedure centers on vectorizing the covariance matrix and treating matrix estimation as a vector estimation problem. Drawing from the compound decision theory literature, we introduce a new class of decision rules that generalizes several existing procedures. We then use a nonparametric empirical Bayes g-modeling approach to estimate the oracle optimal rule in that class. This allows us to let the data itself determine how best to shrink the estimator, rather than shrinking in a pre-determined direction such as toward a diagonal matrix. Simulation results and a gene expression network analysis shows that our approach can outperform a number of state-of-the-art proposals in a wide range of settings, sometimes substantially.Comment: 20 pages, 4 figure
    corecore