43,432 research outputs found

    Distributed Simulation of Heterogeneous and Real-time Systems

    Get PDF
    This work describes a framework for distributed simulation of cyber-physical systems (CPS). Modern CPS comprise large numbers of heterogeneous components, typically designed in very different tools and languages that are not or not easily composeable. Evaluating such large systems requires tools that integrate all components in a systematic, well-defined manner. This work leverages existing frameworks to facilitate the integration offers validation by simulation. A framework for distributed simulation is the IEEE High-Level Architecture (HLA) compliant tool CERTI, which provides the infrastructure for co-simulation of models in various simulation environments as well as hardware components. We use CERTI in combination with Ptolemy II, an environment for modeling and simulating heterogeneous systems. In particular, we focus on models of a CPS, including the physical dynamics of a plant, the software that controls the plant, and the network that enables the communication between controllers. We describe the Ptolemy extensions for the interaction with HLA and demonstrate the approach on a flight control system simulation

    MultiVeStA: Statistical Model Checking for Discrete Event Simulators

    Get PDF
    The modeling, analysis and performance evaluation of large-scale systems are difficult tasks. Due to the size and complexity of the considered systems, an approach typically followed by engineers consists in performing simulations of systems models to obtain statistical estimations of quantitative properties. Similarly, a technique used by computer scientists working on quantitative analysis is Statistical Model Checking (SMC), where rigorous mathematical languages (typically logics) are used to express systems properties of interest. Such properties can then be automatically estimated by tools performing simulations of the model at hand. These property specifications languages, often not popular among engineers, provide a formal, compact and elegant way to express systems properties without needing to hard-code them in the model definition. This paper presents MultiVeStA, a statistical analysis tool which can be easily integrated with existing discrete event simulators, enriching them with efficient distributed statistical analysis and SMC capabilities

    DynamO: A free O(N) general event-driven molecular-dynamics simulator

    Full text link
    Molecular-dynamics algorithms for systems of particles interacting through discrete or "hard" potentials are fundamentally different to the methods for continuous or "soft" potential systems. Although many software packages have been developed for continuous potential systems, software for discrete potential systems based on event-driven algorithms are relatively scarce and specialized. We present DynamO, a general event-driven simulation package which displays the optimal O(N) asymptotic scaling of the computational cost with the number of particles N, rather than the O(N log(N)) scaling found in most standard algorithms. DynamO provides reference implementations of the best available event-driven algorithms. These techniques allow the rapid simulation of both complex and large (>10^6 particles) systems for long times. The performance of the program is benchmarked for elastic hard sphere systems, homogeneous cooling and sheared inelastic hard spheres, and equilibrium Lennard-Jones fluids. This software and its documentation are distributed under the GNU General Public license and can be freely downloaded from http://marcusbannerman.co.uk/dynamo

    Enabling Cross-Event Optimization in Discrete-Event Simulation Through Compile-Time Event Batching

    Get PDF
    A discrete-event simulation (DES) involves the execution of a sequence of event handlers dynamically scheduled at runtime. As a consequence, a priori knowledge of the control flow of the overall simulation program is limited. In particular, powerful optimizations supported by modern compilers can only be applied on the scope of individual event handlers, which frequently involve only a few lines of code. We propose a method that extends the scope for compiler optimizations in discrete-event simulations by generating batches of multiple events that are subjected to compiler optimizations as contiguous procedures. A runtime mechanism executes suitable batches at negligible overhead. Our method does not require any compiler extensions and introduces only minor additional effort during model development. The feasibility and potential performance gains of the approach are illustrated on the example of an idealized proof-ofconcept model. We believe that the applicability of the approach extends to general event-driven programs

    Verification of interlocking systems using statistical model checking

    Get PDF
    In the railway domain, an interlocking is the system ensuring safe train traffic inside a station by controlling its active elements such as the signals or points. Modern interlockings are configured using particular data, called application data, reflecting the track layout and defining the actions that the interlocking can take. The safety of the train traffic relies thereby on application data correctness, errors inside them can cause safety issues such as derailments or collisions. Given the high level of safety required by such a system, its verification is a critical concern. In addition to the safety, an interlocking must also ensure that availability properties, stating that no train would be stopped forever in a station, are satisfied. Most of the research dealing with this verification relies on model checking. However, due to the state space explosion problem, this approach does not scale for large stations. More recently, a discrete event simulation approach limiting the verification to a set of likely scenarios, was proposed. The simulation enables the verification of larger stations, but with no proof that all the interesting scenarios are covered by the simulation. In this paper, we apply an intermediate statistical model checking approach, offering both the advantages of model checking and simulation. Even if exhaustiveness is not obtained, statistical model checking evaluates with a parametrizable confidence the reliability and the availability of the entire system.Comment: 12 pages, 3 figures, 2 table
    • 

    corecore