2,429 research outputs found

    Minkowski sums and Hadamard products of algebraic varieties

    Get PDF
    We study Minkowski sums and Hadamard products of algebraic varieties. Specifically we explore when these are varieties and examine their properties in terms of those of the original varieties.Comment: 25 pages, 7 figure

    The space of generically \'etale families

    Full text link
    We construct a space GXnG^n_X and a rank nn, generically etale family of closed subspaces in a separated ambient space XX. The constructed pair satisfies a universal property of generically etale families of closed subspaces in XX. This universal property is derived directly from the construction and does in particular not use the Hilbert scheme. The constructed space GXnG^n_X is by its universal property canonically identified with a closed subspace of the Hilbert scheme.Comment: 28 pages; replaced TSn−1R⊗RTS^{n-1} R\otimes R with TSn−1,1RTS^{n-1,1} R; simplified some proof

    The asymptotic spectrum of graphs and the Shannon capacity

    Full text link
    We introduce the asymptotic spectrum of graphs and apply the theory of asymptotic spectra of Strassen (J. Reine Angew. Math. 1988) to obtain a new dual characterisation of the Shannon capacity of graphs. Elements in the asymptotic spectrum of graphs include the Lov\'asz theta number, the fractional clique cover number, the complement of the fractional orthogonal rank and the fractional Haemers bounds

    New Directions in Categorical Logic, for Classical, Probabilistic and Quantum Logic

    Get PDF
    Intuitionistic logic, in which the double negation law not-not-P = P fails, is dominant in categorical logic, notably in topos theory. This paper follows a different direction in which double negation does hold. The algebraic notions of effect algebra/module that emerged in theoretical physics form the cornerstone. It is shown that under mild conditions on a category, its maps of the form X -> 1+1 carry such effect module structure, and can be used as predicates. Predicates are identified in many different situations, and capture for instance ordinary subsets, fuzzy predicates in a probabilistic setting, idempotents in a ring, and effects (positive elements below the unit) in a C*-algebra or Hilbert space. In quantum foundations the duality between states and effects plays an important role. It appears here in the form of an adjunction, where we use maps 1 -> X as states. For such a state s and a predicate p, the validity probability s |= p is defined, as an abstract Born rule. It captures many forms of (Boolean or probabilistic) validity known from the literature. Measurement from quantum mechanics is formalised categorically in terms of `instruments', using L\"uders rule in the quantum case. These instruments are special maps associated with predicates (more generally, with tests), which perform the act of measurement and may have a side-effect that disturbs the system under observation. This abstract description of side-effects is one of the main achievements of the current approach. It is shown that in the special case of C*-algebras, side-effect appear exclusively in the non-commutative case. Also, these instruments are used for test operators in a dynamic logic that can be used for reasoning about quantum programs/protocols. The paper describes four successive assumptions, towards a categorical axiomatisation of quantitative logic for probabilistic and quantum systems

    Cryptography from tensor problems

    Get PDF
    We describe a new proposal for a trap-door one-way function. The new proposal belongs to the "multivariate quadratic" family but the trap-door is different from existing methods, and is simpler

    Geometric lower bounds for generalized ranks

    Full text link
    We revisit a geometric lower bound for Waring rank of polynomials (symmetric rank of symmetric tensors) of Landsberg and Teitler and generalize it to a lower bound for rank with respect to arbitrary varieties, improving the bound given by the "non-Abelian" catalecticants recently introduced by Landsberg and Ottaviani. This is applied to give lower bounds for ranks of multihomogeneous polynomials (partially symmetric tensors); a special case is the simultaneous Waring decomposition problem for a linear system of polynomials. We generalize the classical Apolarity Lemma to multihomogeneous polynomials and give some more general statements. Finally we revisit the lower bound of Ranestad and Schreyer, and again generalize it to multihomogeneous polynomials and some more general settings.Comment: 43 pages. v2: minor change
    • …
    corecore