2,351 research outputs found

    Hybrid Metaheuristics for Stochastic Constraint Programming

    Get PDF

    When Interval Analysis Helps Inter-Block Backtracking

    Get PDF
    International audienceInter-block backtracking (IBB) computes all the solutions of sparse systems of non-linear equations over the reals. This algorithm, introduced in 1998 by Bliek et al., handles a system of equations previously decomposed into a set of (small) k × k sub-systems, called blocks. Partial solutions are computed in the different blocks and combined together to obtain the set of global solutions. When solutions inside blocks are computed with interval-based techniques, IBB can be viewed as a new interval-based algorithm for solving decomposed equation systems. Previous implementations used Ilog Solver and its IlcInterval library. The fact that this interval-based solver was more or less a black box implied several strong limitations. The new results described in this paper come from the integration of IBB with the interval-based library developed by the second author. This new library allows IBB to become reliable (no solution is lost) while still gaining several orders of magnitude w.r.t. solving the whole system. We compare several variants of IBB on a sample of benchmarks, which allows us to better understand the behavior of IBB. The main conclusion is that the use of an interval Newton operator inside blocks has the most positive impact on the robustness and performance of IBB. This modifies the influence of other features, such as intelligent backtracking and filtering strategies

    Global Inverse Consistency for Interactive Constraint Satisfaction

    Get PDF
    International audienceSome applications require the interactive resolution of a constraint problem by a human user. In such cases, it is highly desirable that the person who interactively solves the problem is not given the choice to select values that do not lead to solutions. We call this property global inverse consistency. Existing systems simulate this either by maintaining arc consistency after each assignment performed by the user or by compiling offline the problem as a multi-valued decision diagram. In this paper, we define several questions related to global inverse consistency and analyse their complexity. Despite their theoretical intractability, we propose several algorithms for enforcing global inverse consistency and we show that the best version is efficient enough to be used in an interactive setting on several configuration and design problems. We finally extend our contribution to the inverse consistency of tuples

    Preprocessing versus search processing for constraint satisfaction problems

    Get PDF
    A perennial problem in hybrid backtrack CSP search is how much local consistency processing should be done to achieve the best efficiency. This can be divided into two separate questions: (1) how much work should be done before the actual search begins, i.e. during preprocessing? and (2) how much of the same processing should be interleaved with search? At present there are two leading approaches to establishing stronger consistencies than the basic arc consistency maintenance that is done in most solvers. On the one hand there are various kinds singleton arc consistency that can be used; on the other there are several variants of restricted path consistency. To date these have not been compared directly. The present work attempts to do this for a variety of problems, and in so doing, it also provides an empirical evaluation of the preprocessing versus search processing issue. Comparisons are made using the domain/degree and domain/weighted degree variable ordering heuristics. In general, it appears that preprocessing with higher levels of consistency followed by hybrid-AC processing (i.e. MAC) gives the best results, especially when the weighted degree heuristic is used. For problems with n-ary constraints, this difference seems to be even more pronounced. In some cases, higher levels of consistency maintenance established during preprocessing leads to performance gains over MAC of several orders of magnitude

    Arc and path consistency revisited

    Get PDF
    Journal ArticleMackworth and Freuder have analyzed the time complexity of several constraint satisfaction algorithms [4]. We present here new algorithms for arc and path consistency and show that the arc consistency algorithm is optimal in time complexity and of the same order space complexity as the earlier algorithms. A refined solution for the path consistency problem is proposed. However, the space complexity of the path consistency algorithm makes it practicable only for small problems. These algorithms are the result of the synthesis techniques used in ALICE (a general constraint satisfaction system) and local consistency methods
    • 

    corecore