1,205 research outputs found

    Robust graph neural networks via ensemble learning

    Get PDF
    Graph neural networks (GNNs) have demonstrated a remarkable ability in the task of semi-supervised node classification. However, most existing GNNs suffer from the nonrobustness issues, which poses a great challenge for applying GNNs into sensitive scenarios. Some researchers concentrate on constructing an ensemble model to mitigate the nonrobustness issues. Nevertheless, these methods ignore the interaction among base models, leading to similar graph representations. Moreover, due to the deterministic propagation applied in most existing GNNs, each node highly relies on its neighbors, leaving the nodes to be sensitive to perturbations. Therefore, in this paper, we propose a novel framework of graph ensemble learning based on knowledge passing (called GEL) to address the above issues. In order to achieve interaction, we consider the predictions of prior models as knowledge to obtain more reliable predictions. Moreover, we design a multilayer DropNode propagation strategy to reduce each node’s dependence on particular neighbors. This strategy also empowers each node to aggregate information from diverse neighbors, alleviating oversmoothing issues. We conduct experiments on three benchmark datasets, including Cora, Citeseer, and Pubmed. GEL outperforms GCN by more than 5% in terms of accuracy across all three datasets and also performs better than other state-of-the-art baselines. Extensive experimental results also show that the GEL alleviates the nonrobustness and oversmoothing issues. © 2022 by the authors. Licensee MDPI, Basel, Switzerland

    On multi-view learning with additive models

    Get PDF
    In many scientific settings data can be naturally partitioned into variable groupings called views. Common examples include environmental (1st view) and genetic information (2nd view) in ecological applications, chemical (1st view) and biological (2nd view) data in drug discovery. Multi-view data also occur in text analysis and proteomics applications where one view consists of a graph with observations as the vertices and a weighted measure of pairwise similarity between observations as the edges. Further, in several of these applications the observations can be partitioned into two sets, one where the response is observed (labeled) and the other where the response is not (unlabeled). The problem for simultaneously addressing viewed data and incorporating unlabeled observations in training is referred to as multi-view transductive learning. In this work we introduce and study a comprehensive generalized fixed point additive modeling framework for multi-view transductive learning, where any view is represented by a linear smoother. The problem of view selection is discussed using a generalized Akaike Information Criterion, which provides an approach for testing the contribution of each view. An efficient implementation is provided for fitting these models with both backfitting and local-scoring type algorithms adjusted to semi-supervised graph-based learning. The proposed technique is assessed on both synthetic and real data sets and is shown to be competitive to state-of-the-art co-training and graph-based techniques.Comment: Published in at http://dx.doi.org/10.1214/08-AOAS202 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Design of Equipment Rack with TRIZ Method to Reduce Searching Time in Change Over Activity (Case Study : PT. Jans2en Indonesia)

    Get PDF
    Janssen is a manufacturing plant that works in furniture assembly. Component shortages often occurs, it will cause the increase of work in process (WIP) in assembly section. In previous studies, we analyze the root causes with FMEA and then it is resulted that router section is the constraint of the system. There are many non value added activities such as searching and transportation caused by a messy condition of work places and the devices that aren’t put in the right place. The impact is that the time allocated for every change over is higher than before. There are many components that are worked by the router section, so improvements are needed to minimize changes in over time. 5S method and the use of a new design of rack by TRIZ method are suggested for fixing the conditions of work environment. It is expected to eliminate non value added activities and changes in over time. Result shows that we can reduce non value activities in change over of regular components up to 41% and the elimination of this time is 41,6%. The non value activities in changeover of new items is 36,6% and this elimination of time is 53,3%. Key word : change over, kaizen, design, TRIZ metho

    TPM: Transition probability matrix - Graph structural feature based embedding

    Get PDF
    summary:In this work, Transition Probability Matrix (TPM) is proposed as a new method for extracting the features of nodes in the graph. The proposed method uses random walks to capture the connectivity structure of a node's close neighborhood. The information obtained from random walks is converted to anonymous walks to extract the topological features of nodes. In the embedding process of nodes, anonymous walks are used since they capture the topological similarities of connectivities better than random walks. Therefore the obtained embedding vectors have richer information about the underlying connectivity structure. The method is applied to node classification and link prediction tasks. The performance of the proposed algorithm is superior to the state-of-the-art algorithms in the recent literature. Moreover, the extracted information about the connectivity structure of similar networks is used to link prediction and node classification tasks for a completely new graph
    • …
    corecore