1,190,829 research outputs found

    Towards improved performance and interoperability in distributed and physical union catalogues

    Get PDF
    Purpose of this paper: This paper details research undertaken to determine the key differences in the performance of certain centralised (physical) and distributed (virtual) bibliographic catalogue services, and to suggest strategies for improving interoperability and performance in, and between, physical and virtual models. Design/methodology/approach: Methodically defined searches of a centralised catalogue service and selected distributed catalogues were conducted using the Z39.50 information retrieval protocol, allowing search types to be semantically defined. The methodology also entailed the use of two workshops comprising systems librarians and cataloguers to inform suggested strategies for improving performance and interoperability within both environments. Findings: Technical interoperability was permitted easily between centralised and distributed models, however the various individual configurations permitted only limited semantic interoperability. Significant prescription in cataloguing and indexing guidelines, greater participation in the Program for Collaborative Cataloging (PCC), consideration of future 'FRBR' migration, and greater disclosure to end users are some of the suggested strategies to improve performance and semantic interoperability. Practical implications: This paper informs the LIS research community and union catalogue administrators, but also has numerous practical implications for those establishing distributed systems based on Z39.50 and SRW, as well as those establishing centralised systems. What is original/value of the paper?: The paper moves the discussion of Z39.50 based systems away from anecdotal evidence and provides recommendations based on testing and is intimately informed by the UK cataloguing and systems librarian community

    Parallel Discrete Event Simulation with Erlang

    Full text link
    Discrete Event Simulation (DES) is a widely used technique in which the state of the simulator is updated by events happening at discrete points in time (hence the name). DES is used to model and analyze many kinds of systems, including computer architectures, communication networks, street traffic, and others. Parallel and Distributed Simulation (PADS) aims at improving the efficiency of DES by partitioning the simulation model across multiple processing elements, in order to enabling larger and/or more detailed studies to be carried out. The interest on PADS is increasing since the widespread availability of multicore processors and affordable high performance computing clusters. However, designing parallel simulation models requires considerable expertise, the result being that PADS techniques are not as widespread as they could be. In this paper we describe ErlangTW, a parallel simulation middleware based on the Time Warp synchronization protocol. ErlangTW is entirely written in Erlang, a concurrent, functional programming language specifically targeted at building distributed systems. We argue that writing parallel simulation models in Erlang is considerably easier than using conventional programming languages. Moreover, ErlangTW allows simulation models to be executed either on single-core, multicore and distributed computing architectures. We describe the design and prototype implementation of ErlangTW, and report some preliminary performance results on multicore and distributed architectures using the well known PHOLD benchmark.Comment: Proceedings of ACM SIGPLAN Workshop on Functional High-Performance Computing (FHPC 2012) in conjunction with ICFP 2012. ISBN: 978-1-4503-1577-

    Chemical structure matching using correlation matrix memories

    Get PDF
    This paper describes the application of the Relaxation By Elimination (RBE) method to matching the 3D structure of molecules in chemical databases within the frame work of binary correlation matrix memories. The paper illustrates that, when combined with distributed representations, the method maps well onto these networks, allowing high performance implementation in parallel systems. It outlines the motivation, the neural architecture, the RBE method and presents some results of matching small molecules against a database of 100,000 models

    Bit rates in audio source coding

    Get PDF
    The goal is to introduce and solve the audio coding optimization problem. Psychoacoustic results such as masking and excitation pattern models are combined with results from rate distortion theory to formulate the audio coding optimization problem. The solution of the audio optimization problem is a masked error spectrum, prescribing how quantization noise must be distributed over the audio spectrum to obtain a minimal bit rate and an inaudible coding errors. This result cannot only be used to estimate performance bounds, but can also be directly applied in audio coding systems. Subband coding applications to magnetic recording and transmission are discussed in some detail. Performance bounds for this type of subband coding system are derived

    Toward Comprehensive Specification of Distributed Systems

    Get PDF
    A new approach to modelling distributed systems is presented. It uses sequential processes and event synchronization as building blocks to construct a cohesive picture of the interdependent requirements for the functionality, architecture, scheduling policies, and performance attributes of a distributed system. A language called CSPS (an extension of Hoare\u27s CSP) is used in the illustration of the approach. Employing CSP as a base allows modelled systems to be verified using techniques already developed for verifying CSP programs and leads to the emergence of a uniform incremental strategy for verifying both logical and performance properties of distributed systems. Several small distributed systems have been modelled using this approach. These exercises enabled us to evaluate the notation system and to gain some expertise on how to approach the specification of distributed systems. This paper describes one of the models and the modelling strategy that has emerged from these exercises

    Non Parametric Distributed Inference in Sensor Networks Using Box Particles Messages

    Get PDF
    This paper deals with the problem of inference in distributed systems where the probability model is stored in a distributed fashion. Graphical models provide powerful tools for modeling this kind of problems. Inspired by the box particle filter which combines interval analysis with particle filtering to solve temporal inference problems, this paper introduces a belief propagation-like message-passing algorithm that uses bounded error methods to solve the inference problem defined on an arbitrary graphical model. We show the theoretic derivation of the novel algorithm and we test its performance on the problem of calibration in wireless sensor networks. That is the positioning of a number of randomly deployed sensors, according to some reference defined by a set of anchor nodes for which the positions are known a priori. The new algorithm, while achieving a better or similar performance, offers impressive reduction of the information circulating in the network and the needed computation times

    Distributed Control of Positive Systems

    Full text link
    A system is called positive if the set of non-negative states is left invariant by the dynamics. Stability analysis and controller optimization are greatly simplified for such systems. For example, linear Lyapunov functions and storage functions can be used instead of quadratic ones. This paper shows how such methods can be used for synthesis of distributed controllers. It also shows that stability and performance of such control systems can be verified with a complexity that scales linearly with the number of interconnections. Several results regarding scalable synthesis and verfication are derived, including a new stronger version of the Kalman-Yakubovich-Popov lemma for positive systems. Some main results are stated for frequency domain models using the notion of positively dominated system. The analysis is illustrated with applications to transportation networks, vehicle formations and power systems
    corecore