91,348 research outputs found

    Some order dimension bounds for communication complexity problems

    Get PDF
    We associate with a general (0, 1)-matrixM an ordered setP(M) and derive lower and upper bounds for the deterministic communication complexity ofM in terms of the order dimension ofP(M). We furthermore consider the special class of communication matricesM obtained as cliques vs. stable sets incidence matrices of comparability graphsG. We bound their complexity byO((logd)·(logn)), wheren is the number of nodes ofG andd is the order dimension of an orientation ofG. In this special case, our bound is shown to improve other well-known bounds obtained for the general cliques vs. stable set problem

    String Matching: Communication, Circuits, and Learning

    Get PDF
    String matching is the problem of deciding whether a given n-bit string contains a given k-bit pattern. We study the complexity of this problem in three settings. - Communication complexity. For small k, we provide near-optimal upper and lower bounds on the communication complexity of string matching. For large k, our bounds leave open an exponential gap; we exhibit some evidence for the existence of a better protocol. - Circuit complexity. We present several upper and lower bounds on the size of circuits with threshold and DeMorgan gates solving the string matching problem. Similarly to the above, our bounds are near-optimal for small k. - Learning. We consider the problem of learning a hidden pattern of length at most k relative to the classifier that assigns 1 to every string that contains the pattern. We prove optimal bounds on the VC dimension and sample complexity of this problem

    Sample Complexity Bounds on Differentially Private Learning via Communication Complexity

    Full text link
    In this work we analyze the sample complexity of classification by differentially private algorithms. Differential privacy is a strong and well-studied notion of privacy introduced by Dwork et al. (2006) that ensures that the output of an algorithm leaks little information about the data point provided by any of the participating individuals. Sample complexity of private PAC and agnostic learning was studied in a number of prior works starting with (Kasiviswanathan et al., 2008) but a number of basic questions still remain open, most notably whether learning with privacy requires more samples than learning without privacy. We show that the sample complexity of learning with (pure) differential privacy can be arbitrarily higher than the sample complexity of learning without the privacy constraint or the sample complexity of learning with approximate differential privacy. Our second contribution and the main tool is an equivalence between the sample complexity of (pure) differentially private learning of a concept class CC (or SCDP(C)SCDP(C)) and the randomized one-way communication complexity of the evaluation problem for concepts from CC. Using this equivalence we prove the following bounds: 1. SCDP(C)=Ω(LDim(C))SCDP(C) = \Omega(LDim(C)), where LDim(C)LDim(C) is the Littlestone's (1987) dimension characterizing the number of mistakes in the online-mistake-bound learning model. Known bounds on LDim(C)LDim(C) then imply that SCDP(C)SCDP(C) can be much higher than the VC-dimension of CC. 2. For any tt, there exists a class CC such that LDim(C)=2LDim(C)=2 but SCDP(C)tSCDP(C) \geq t. 3. For any tt, there exists a class CC such that the sample complexity of (pure) α\alpha-differentially private PAC learning is Ω(t/α)\Omega(t/\alpha) but the sample complexity of the relaxed (α,β)(\alpha,\beta)-differentially private PAC learning is O(log(1/β)/α)O(\log(1/\beta)/\alpha). This resolves an open problem of Beimel et al. (2013b).Comment: Extended abstract appears in Conference on Learning Theory (COLT) 201

    Sign rank versus VC dimension

    Full text link
    This work studies the maximum possible sign rank of N×NN \times N sign matrices with a given VC dimension dd. For d=1d=1, this maximum is {three}. For d=2d=2, this maximum is Θ~(N1/2)\tilde{\Theta}(N^{1/2}). For d>2d >2, similar but slightly less accurate statements hold. {The lower bounds improve over previous ones by Ben-David et al., and the upper bounds are novel.} The lower bounds are obtained by probabilistic constructions, using a theorem of Warren in real algebraic topology. The upper bounds are obtained using a result of Welzl about spanning trees with low stabbing number, and using the moment curve. The upper bound technique is also used to: (i) provide estimates on the number of classes of a given VC dimension, and the number of maximum classes of a given VC dimension -- answering a question of Frankl from '89, and (ii) design an efficient algorithm that provides an O(N/log(N))O(N/\log(N)) multiplicative approximation for the sign rank. We also observe a general connection between sign rank and spectral gaps which is based on Forster's argument. Consider the N×NN \times N adjacency matrix of a Δ\Delta regular graph with a second eigenvalue of absolute value λ\lambda and ΔN/2\Delta \leq N/2. We show that the sign rank of the signed version of this matrix is at least Δ/λ\Delta/\lambda. We use this connection to prove the existence of a maximum class C{±1}NC\subseteq\{\pm 1\}^N with VC dimension 22 and sign rank Θ~(N1/2)\tilde{\Theta}(N^{1/2}). This answers a question of Ben-David et al.~regarding the sign rank of large VC classes. We also describe limitations of this approach, in the spirit of the Alon-Boppana theorem. We further describe connections to communication complexity, geometry, learning theory, and combinatorics.Comment: 33 pages. This is a revised version of the paper "Sign rank versus VC dimension". Additional results in this version: (i) Estimates on the number of maximum VC classes (answering a question of Frankl from '89). (ii) Estimates on the sign rank of large VC classes (answering a question of Ben-David et al. from '03). (iii) A discussion on the computational complexity of computing the sign-ran

    Support-based lower bounds for the positive semidefinite rank of a nonnegative matrix

    Full text link
    The positive semidefinite rank of a nonnegative (m×n)(m\times n)-matrix~SS is the minimum number~qq such that there exist positive semidefinite (q×q)(q\times q)-matrices A1,,AmA_1,\dots,A_m, B1,,BnB_1,\dots,B_n such that S(k,\ell) = \mbox{tr}(A_k^* B_\ell). The most important, lower bound technique for nonnegative rank is solely based on the support of the matrix S, i.e., its zero/non-zero pattern. In this paper, we characterize the power of lower bounds on positive semidefinite rank based on solely on the support.Comment: 9 page

    Exponential Lower Bounds for Polytopes in Combinatorial Optimization

    Get PDF
    We solve a 20-year old problem posed by Yannakakis and prove that there exists no polynomial-size linear program (LP) whose associated polytope projects to the traveling salesman polytope, even if the LP is not required to be symmetric. Moreover, we prove that this holds also for the cut polytope and the stable set polytope. These results were discovered through a new connection that we make between one-way quantum communication protocols and semidefinite programming reformulations of LPs.Comment: 19 pages, 4 figures. This version of the paper will appear in the Journal of the ACM. The earlier conference version in STOC'12 had the title "Linear vs. Semidefinite Extended Formulations: Exponential Separation and Strong Lower Bounds
    corecore