44,499 research outputs found

    Some Open Problems in Combinatorial Physics

    Full text link
    We point out four problems which have arisen during the recent research in the domain of Combinatorial Physics

    The multivariate Tutte polynomial (alias Potts model) for graphs and matroids

    Get PDF
    The multivariate Tutte polynomial (known to physicists as the Potts-model partition function) can be defined on an arbitrary finite graph G, or more generally on an arbitrary matroid M, and encodes much important combinatorial information about the graph (indeed, in the matroid case it encodes the full structure of the matroid). It contains as a special case the familiar two-variable Tutte polynomial -- and therefore also its one-variable specializations such as the chromatic polynomial, the flow polynomial and the reliability polynomial -- but is considerably more flexible. I begin by giving an introduction to all these problems, stressing the advantages of working with the multivariate version. I then discuss some questions concerning the complex zeros of the multivariate Tutte polynomial, along with their physical interpretations in statistical mechanics (in connection with the Yang--Lee approach to phase transitions) and electrical circuit theory. Along the way I mention numerous open problems. This survey is intended to be understandable to mathematicians with no prior knowledge of physics

    Combinatorics and Boson normal ordering: A gentle introduction

    Full text link
    We discuss a general combinatorial framework for operator ordering problems by applying it to the normal ordering of the powers and exponential of the boson number operator. The solution of the problem is given in terms of Bell and Stirling numbers enumerating partitions of a set. This framework reveals several inherent relations between ordering problems and combinatorial objects, and displays the analytical background to Wick's theorem. The methodology can be straightforwardly generalized from the simple example given herein to a wide class of operators.Comment: 8 pages, 1 figur

    A product formula and combinatorial field theory

    Get PDF
    We treat the problem of normally ordering expressions involving the standard boson operators a, ay where [a; ay] = 1. We show that a simple product formula for formal power series | essentially an extension of the Taylor expansion | leads to a double exponential formula which enables a powerful graphical description of the generating functions of the combinatorial sequences associated with such functions | in essence, a combinatorial eld theory. We apply these techniques to some examples related to specic physical Hamiltonians

    Scaling and Universality in Continuous Length Combinatorial Optimization

    Full text link
    We consider combinatorial optimization problems defined over random ensembles, and study how solution cost increases when the optimal solution undergoes a small perturbation delta. For the minimum spanning tree, the increase in cost scales as delta^2; for the mean-field and Euclidean minimum matching and traveling salesman problems in dimension d>=2, the increase scales as delta^3; this is observed in Monte Carlo simulations in d=2,3,4 and in theoretical analysis of a mean-field model. We speculate that the scaling exponent could serve to classify combinatorial optimization problems into a small number of distinct categories, similar to universality classes in statistical physics.Comment: 5 pages; 3 figure

    A Framework for Structured Quantum Search

    Get PDF
    A quantum algorithm for general combinatorial search that uses the underlying structure of the search space to increase the probability of finding a solution is presented. This algorithm shows how coherent quantum systems can be matched to the underlying structure of abstract search spaces, and is analytically simpler than previous structured search methods. The algorithm is evaluated empirically with a variety of search problems, and shown to be particularly effective for searches with many constraints. Furthermore, the algorithm provides a simple framework for utilizing search heuristics. It also exhibits the same phase transition in search difficulty as found for sophisticated classical search methods, indicating it is effectively using the problem structure.Comment: 18 pages, Latex, 7 figures, further information available at ftp://parcftp.xerox.com/pub/dynamics/quantum.htm
    • …
    corecore