1,079 research outputs found

    ACTIVE CURRENT INJECTION METHOD FOR LIMITING GROUND FAULT CURRENT HARMONICS IN UNDERGROUND COAL MINES

    Get PDF
    Current practice in U.S. underground coal mine high-voltage distribution systems is to attempt to limit ground fault current to 25 Amperes and de-energize the circuit at 10 Amperes. However, the significant amount of system capacitance due to the use of shielded cables can cause ground fault current to be two or three times the intended ground fault limit. Consequently, this practice can cause several issues such as ground fault currents significantly exceeding the neutral grounding resistor current limit, loss of relay selectivity in the distribution system, and transient overvoltages in certain ground fault situations. These issues are solved to some extent by using a resonance grounded system, currently used in some other countries. However, a shortcoming of traditional resonance grounded systems is the inability to deal with the harmonic components existing in ground fault current. With the increasing use of nonlinear sources such as variable frequency drives, the proportion of harmonic components in ground fault current can be significant. Consequently, although the fundamental component can be almost fully compensated in a traditional resonance grounded system, the harmonic components can still be large enough to maintain arcing and cause personal injury and equipment damage. In this dissertation, a novel method is developed to perform real-time prediction of the harmonics in ground fault currents. Methods for neutralizing the ground fault current harmonics and identifying ground fault location are also developed. Results indicate that the combination of traditional high-resistance grounding and active current injection to neutralize harmonics in the ground fault has the potential to significantly reduce the total ground fault current and reduce arc and flash hazards during ground faults in high voltage distribution systems

    Intermittent earth fault passage indication in compensated distribution networks

    Get PDF
    An intermittent or restriking earth fault is a special type of earth fault that is common mostly in compensated cable networks. A great deal of effort has gone into protection against this type of fault. However, locating this fault has not received much attention. Therefore, there is a need to have a reliable method for locating this fault to repair the damaged cable. In this paper, the principles of a new method developed for locating transient intermittent earth faults on distribution networks are presented. The proposed method employs negative and zero sequence currents, and no voltage measurement is required, which means the proposed method has the potential to reduce cost when implemented in practice. It is intended mainly for typical intermittent earth faults in cable distribution networks where the typical fault resistance is in the range of a few ohms. Real data obtained from practical field tests is used to explain the phenomenon. A series of disturbance recordings obtained from field tests validate the proposed method.©2021 Elsevier. This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.fi=vertaisarvioitu|en=peerReviewed

    Novel methods for earth fault passage indication in non-effectively grounded electricity distribution networks

    Get PDF
    Electricity distribution networks are commonly subject to supply interruptions and outages caused by faults. This dissertation focuses on medium voltage distribution networks, which typically consist of primary substations having multiple feeders along which secondary substations are located. When a permanent fault occurs on a segment (the part linking two consecutive secondary substations) of a distribution feeder, the faulted segment needs to be identified and isolated. Identifying the faulted segment can be realized through fault passage indicators. This is a straightforward task when the fault type is a short circuit, as these types of faults involve large currents. However, faulted segment identification for earth faults in non-effectively grounded medium voltage distribution networks has remained a challenge as the earth fault current in those networks is typically relatively small. Therefore, the main objective of this dissertation was to develop novel methods for locating single-phase earth faults in medium voltage distribution networks and validating them through simulations and real system measurements. After comprehensive review of state-of-the-art approaches presented in the literature, the dissertation proposes innovative methods for earth fault passage indication aimed at non-effectively grounded urban or rural distribution networks with radial feeders. The proposed methods are underpinned by a theoretical analysis based on the symmetrical components of the currents on a distribution feeder under an earth fault condition. The comparison of the sequence currents collected from various measuring points on the network forms the backbone of the methods. For practical implementation, current measurements need to be transferred to a central location for processing and decision making, but this can be done without accurate time synchronization. The proposed methods were developed and verified through simulations and empirical data. This work is a product of close collaboration between academia and industry that enabled the validation of the proposed methods with the help of empirical data that was provided by system operators and relay manufacturers. The results obtained from simulations and field tests show the efficacy of utilizing sequence current quantities, in the manner proposed in this work, for identifying the passage of earth faults with fault resistances ranging from zero to several kilo-ohms. In practice, the methods are reliable as long as the current measurements are accurate enough.Sähkönjakeluverkoissa esiintyy vikoja, jotka aiheuttavat sähkönjakelun keskeytyksiä eli sähkökatkoja. Tämä väitöskirja käsittelee keskijänniteverkkoja, jotka koostuvat sähköasemista ja niiltä lähtevistä johtolähdöistä. Johtolähtöjen varrella sijaitsevat pienjänniteverkkoa syöttävät muuntamot. Kun jollain johto-osuudella (tässä ns. muuntamovälillä, joka yhdistää kaksi peräkkäistä muuntamoa) ilmenee pysyvä vika, viallinen johto-osuus on tunnistettava ja erotettava. Viallisen johto-osuuden tunnistaminen tapahtuu vianilmaisimien avulla. Viallisen johto-osuuden tunnistaminen on yksinkertaista, kun vikatyyppi on oikosulku, sillä oikosuluille ominaista ovat yleensä suuret vikavirrat. Haasteena on kuitenkin edelleen viallisten johto-osuuksien tunnistaminen maasulkutilanteissa ei-tehollisesti maadoitetuissa keskijänniteverkoissa, joissa maasulkuvirta on tyypillisesti hyvin pieni. Tämän väitöskirjana tavoitteena on ollut kehittää uusia menetelmiä maasulkuvikojen paikantamiseen keskijänniteverkossa ja varmentaa niiden toimivuus simuloinnein ja todellisesta verkosta saatujen mittausten avulla. Kattavan kirjallisuuskatsauksen jälkeen tässä väitöskirjassa esitellään innovatiivisia menetelmiä vikavirran reitin ilmaisuun jakeluverkkojen maasuluissa. Ehdotetut menetelmät tukeutuvat teoreettiseen analyysiin, jossa johtolähdön virrat maasulkutilanteessa on kuvattu symmetristen komponenttien avulla. Menetelmät perustuvat verkon eri pisteissä mitattuihin virran symmetristen komponenttien vertailuun. Käytännön toteutuksessa nämä mittaukset tulee siirtää keskitettyyn järjestelmään prosessointia ja päätöksentekoa varten, mutta tämä voidaan tehdä ilman tarkkaa aikasynkronointia. Ehdotettujen menetelmien kehittämisessä ja testaamisessa hyödynnettiin simulointeja ja kokeellista mittausdataa. Yhteistyö teollisuuden kanssa mahdollisti menetelmien toiminnan todentamisen hyödyntäen todellisista verkoista mitattua dataa, jota saatiin sekä verkkoyhtiöiltä että laitevalmistajilta. Simulointien tulokset ja mittaukset todellisessa verkossa tehdyistä testeistä osoittavat, että virran symmetriset komponentit toimivat hyvin vian paikannuksessa kun vikaresistanssi on nollan ja muutaman tuhannen ohmin välillä. Käytännössä menetelmien luotettavuus riippuu virran mittauksen tarkkuudesta.fi=vertaisarvioitu|en=peerReviewed

    Pulse position type fluxgate sensors

    Get PDF

    Principle and Control Design of Active Ground-Fault Arc Suppression Device for Full Compensation of Ground Current

    Get PDF

    Faults Detection for Power Systems

    Get PDF
    Non

    Modeling and Recognition of Smart Grid Faults by a Combined Approach of Dissimilarity Learning and One-Class Classification

    Full text link
    Detecting faults in electrical power grids is of paramount importance, either from the electricity operator and consumer viewpoints. Modern electric power grids (smart grids) are equipped with smart sensors that allow to gather real-time information regarding the physical status of all the component elements belonging to the whole infrastructure (e.g., cables and related insulation, transformers, breakers and so on). In real-world smart grid systems, usually, additional information that are related to the operational status of the grid itself are collected such as meteorological information. Designing a suitable recognition (discrimination) model of faults in a real-world smart grid system is hence a challenging task. This follows from the heterogeneity of the information that actually determine a typical fault condition. The second point is that, for synthesizing a recognition model, in practice only the conditions of observed faults are usually meaningful. Therefore, a suitable recognition model should be synthesized by making use of the observed fault conditions only. In this paper, we deal with the problem of modeling and recognizing faults in a real-world smart grid system, which supplies the entire city of Rome, Italy. Recognition of faults is addressed by following a combined approach of multiple dissimilarity measures customization and one-class classification techniques. We provide here an in-depth study related to the available data and to the models synthesized by the proposed one-class classifier. We offer also a comprehensive analysis of the fault recognition results by exploiting a fuzzy set based reliability decision rule

    Medium Voltage Network Residual Earth Fault Current Estimation Methods

    Get PDF
    Extensive cabling during 2010s has drastically changed the earth fault behaviour of the rural area distribution network. Against the assumptions of traditional earth fault analysis, cable net-work zero sequence series impedance is nonnegligible, thus zero sequence voltage applied over the zero sequence impedance during an earth fault generates a resistive component to the earth fault current in addition to the capacitive component. In the resonant earthed neutral sys-tem, capacitive earth fault current can be compensated with inductive Petersen coils, but the resistive current component cannot be compensated with Petersen coils. Increase of resistive earth fault current will increase the absolute value of the residual earth fault current flowing to ground during the earth fault and consequently cause dangerous touch voltages. The reactive component of the residual earth fault current is mostly known but the resistive component is associated with multiple uncertainties. The harmonic component is out of the scope of this thesis and thus omitted. Due to the uncertainties, calculation of the resistive earth fault current has proven to be complicated, but if residual earth fault current is to be calculated accurately, the resistive component must be calculated or estimated first. The SFS 6001: 2018 standard states that if the residual earth fault current in resonant earthed neutral system is unknown the value can be assumed 10% of the network capacitive earth fault current. However, as extensive cabling increases resistive earth fault current production of the network, the validity of this assumption has caused concern. Therefore, the aim of this thesis was to develop a practically oriented model for estimating residual earth fault current that can easily be applied to multiple locations in the network. Secondly, the validity of the 10% assumption specified by the standard was studied in Elenia’s network. The network information system used in Elenia is currently unable to take into account the cable network zero sequence impedance, thus a statistical examination was performed based on network data from 45 primary transformer areas. The measurements from centralized Petersen coil regulators were utilized in the examination, since the regulators provide real-time measurement of the network resistive earth fault current production. In the statistical examination the dependency of resistive earth fault current from other network parameters was studied. The objective was to identify variables that correlate with resistive earth fault current, so that they could be used to estimate the resistive earth fault current. After the correlation analysis, correction factors were assigned to the variables and the results were compared to the measurements from the regulators. The conclusion was that the resistive earth fault current can be estimated to be 5% of the total capacitive earth fault current. This result was applied to residual earth fault current calculation and the obtained values were again compared to the values calculated from the measurements. There was only a minor difference, which implies that the developed model yields accurate results. More importantly, the developed model proved to provide more accurate results than the estimation method specified in SFS 6001, that acted as a reference. In addition, there are two alternative interpretations of the method specified in the standard, so depending on the interpretation, the results were either too high or too low when applied to Elenia’s network. However, the results of this thesis are heavily dependent on the properties of the network, thus results should only be applied to networks with similar configuration

    Control Method of Single-phase Inverter Based Grounding System in Distribution Networks

    Get PDF
    corecore