569 research outputs found

    RC4 Encryption-A Literature Survey

    Get PDF
    AbstractA chronological survey demonstrating the cryptanalysis of RC4 stream cipher is presented in this paper. We have summarized the various weaknesses of RC4 algorithm followed by the recently proposed enhancements available in the literature. It is established that innovative research efforts are required to develop secure RC4 algorithm, which can remove the weaknesses of RC4, such as biased bytes, key collisions, and key recovery attacks on WPA. These flaws in RC4 are still offering an open challenge for developers. Hence our chronological survey corroborates the fact that even though researchers are working on RC4 stream cipher since last two decades, it still offers a plethora of research issues. The attraction of community towards RC4 is still alive

    ECSC-128: New Stream Cipher Based On Elliptic Curve Discrete Logarithm Problem.

    Get PDF
    Ecsc-128 is a new stream cipher based on the intractability of the Elliptic curve discrete logarithm problem. The design of ECSC-l2g is divided into three important stages: Initialization Stage, Keystream Generation stage, and the Encryption Stage. The design goal of ECSC-128 is to come up with a secure stream cipher for data encryption. Ecsc-l2g was designed based on some hard mathematical problems instead of using simple logical operations. In terms of performance and security, Ecsc-l2g was slower, but it provided high level of security against all possible cryptanalysis attacks

    Rethinking the Weakness of Stream Ciphers and Its Application to Encrypted Malware Detection

    Get PDF
    Encryption key use is a critical component to the security of a stream cipher: because many implementations simply consist of a key scheduling algorithm and logical exclusive or (XOR), an attacker can completely break the cipher by XORing two ciphertexts encrypted under the same key, revealing the original plaintexts and the key itself. The research presented in this paper reinterprets this phenomenon, using repeated-key cryptanalysis for stream cipher identification. It has been found that a stream cipher executed under a fixed key generates patterns in each character of the ciphertexts it produces and that these patterns can be used to create a fingerprint which is distinct to a certain stream cipher and encryption key pair. A discrimination function, trained on this fingerprint, optimally separates ciphertexts generated through an enciphering pair from those which are generated by any other means. The patterns were observed in the Rivest Cipher 4 (RC4), ChaCha20-Poly1305, and Salsa20 stream ciphers as well as block cipher modes of operation that perform similarly to stream ciphers, such as: Counter (CTR), Galois/Counter (GCM), and Output feedback (OFB) modes. The discriminatory scheme proposed in this study perfectly detects ciphertexts of a fixed-key stream cipher with or without explicit knowledge of the key which may be utilized to detect a specific type of malware that exploits a stream cipher with a stored key to encrypt or obfuscate its activity. Finally, using real-world example of this type of malware, it is shown that the scheme is capable of detecting packets sent by the DarkComet remote access trojan, which utilizes RC4, with 100% accuracy in about 36 μs, providing a fast and highly accurate tool to aid in detecting malware using encryption
    corecore