64,709 research outputs found

    On Structure of Some Plane Graphs with Application to Choosability

    Get PDF
    AbstractA graph G=(V, E) is (x, y)-choosable for integers x>y⩾1 if for any given family {A(v)∣v∈V} of sets A(v) of cardinality x, there exists a collection {B(v)∣v∈V} of subsets B(v)⊂A(v) of cardinality y such that B(u)∩B(v)=∅ whenever uv∈E(G). In this paper, structures of some plane graphs, including plane graphs with minimum degree 4, are studied. Using these results, we may show that if G is free of k-cycles for some k∈{3, 4, 5, 6}, or if any two triangles in G have distance at least 2, then G is (4m, m)-choosable for all nonnegative integers m. When m=1, (4m, m)-choosable is simply 4-choosable. So these conditions are also sufficient for a plane graph to be 4-choosable

    An improvement of sufficient condition for kk-leaf-connected graphs

    Full text link
    For integer k≥2,k\geq2, a graph GG is called kk-leaf-connected if ∣V(G)∣≥k+1|V(G)|\geq k+1 and given any subset S⊆V(G)S\subseteq V(G) with ∣S∣=k,|S|=k, GG always has a spanning tree TT such that SS is precisely the set of leaves of T.T. Thus a graph is 22-leaf-connected if and only if it is Hamilton-connected. In this paper, we present a best possible condition based upon the size to guarantee a graph to be kk-leaf-connected, which not only improves the results of Gurgel and Wakabayashi [On kk-leaf-connected graphs, J. Combin. Theory Ser. B 41 (1986) 1-16] and Ao, Liu, Yuan and Li [Improved sufficient conditions for kk-leaf-connected graphs, Discrete Appl. Math. 314 (2022) 17-30], but also extends the result of Xu, Zhai and Wang [An improvement of spectral conditions for Hamilton-connected graphs, Linear Multilinear Algebra, 2021]. Our key approach is showing that an (n+k−1)(n+k-1)-closed non-kk-leaf-connected graph must contain a large clique if its size is large enough. As applications, sufficient conditions for a graph to be kk-leaf-connected in terms of the (signless Laplacian) spectral radius of GG or its complement are also presented.Comment: 15 pages, 2 figure

    Shilla distance-regular graphs

    Full text link
    A Shilla distance-regular graph G (say with valency k) is a distance-regular graph with diameter 3 such that its second largest eigenvalue equals to a3. We will show that a3 divides k for a Shilla distance-regular graph G, and for G we define b=b(G):=k/a3. In this paper we will show that there are finitely many Shilla distance-regular graphs G with fixed b(G)>=2. Also, we will classify Shilla distance-regular graphs with b(G)=2 and b(G)=3. Furthermore, we will give a new existence condition for distance-regular graphs, in general.Comment: 14 page
    • …
    corecore