899 research outputs found

    Motion Structures

    Get PDF
    Motion structures are simply assemblies of resistant bodies connected by movable joints. Unlike conventional structures, they allow large shape transformations to satisfy practical requirements and they can be used in:shelters, emergency structures and exhibition standsaircraft morphing wingssatellite solar panels and space antennasmorphing core m

    CAD-based approach for identification of elasto-static parameters of robotic manipulators

    Get PDF
    The paper presents an approach for the identification of elasto-static parameters of a robotic manipulator using the virtual experiments in a CAD environment. It is based on the numerical processing of the data extracted from the finite element analysis results, which are obtained for isolated manipulator links. This approach allows to obtain the desired stiffness matrices taking into account the complex shape of the links, couplings between rotational/translational deflections and particularities of the joints connecting adjacent links. These matrices are integral parts of the manipulator lumped stiffness model that are widely used in robotics due to its high computational efficiency. To improve the identification accuracy, recommendations for optimal settings of the virtual experiments are given, as well as relevant statistical processing techniques are proposed. Efficiency of the developed approach is confirmed by a simulation study that shows that the accuracy in evaluating the stiffness matrix elements is about 0.1%.Comment: arXiv admin note: substantial text overlap with arXiv:0909.146

    IRSBOT-2: A Novel Two-Dof Parallel Robot for High-Speed Operations

    Get PDF
    International audienceThis paper presents a novel two-degree-of-freedom (DOF) translational parallel robot for high-speed applications named the IRSBot-2 (acronym for IRCCyN Spatial Robot with 2 DOF). Unlike most two-DOF robots dedicated to planar translational motions, this robot has two spatial kinematic chains which confers a very good intrinsic stiffness. First, the robot architecture is described. Then, its actuation and constraint singularities are analyzed. Finally, the IRSBot-2 is compared to its two-DOF counterparts based on elastostatic performances

    Motion Structures

    Get PDF
    Motion structures are simply assemblies of resistant bodies connected by movable joints. Unlike conventional structures, they allow large shape transformations to satisfy practical requirements and they can be used in:shelters, emergency structures and exhibition standsaircraft morphing wingssatellite solar panels and space antennasmorphing core m

    Accuracy Improvement for Stiffness Modeling of Parallel Manipulators

    Get PDF
    The paper focuses on the accuracy improvement of stiffness models for parallel manipulators, which are employed in high-speed precision machining. It is based on the integrated methodology that combines analytical and numerical techniques and deals with multidimensional lumped-parameter models of the links. The latter replace the link flexibility by localized 6-dof virtual springs describing both translational/rotational compliance and the coupling between them. There is presented detailed accuracy analysis of the stiffness identification procedures employed in the commercial CAD systems (including statistical analysis of round-off errors, evaluating the confidence intervals for stiffness matrices). The efficiency of the developed technique is confirmed by application examples, which deal with stiffness analysis of translational parallel manipulators

    Outils pour l’identification des paramètres de raideur des robots à l’aide d’un logiciel de CAO

    Get PDF
    This report proposes a CAD-based approach for identification of the elasto-static parameters of the robotic manipulators. The main contributions are in the areas of virtual experiment planning and algorithmic data processing, which allows to obtain the stiffness matrix with required accuracy. In contrast to previous works, the developed technique operates with the deflection field produced by virtual experiments in a CAD environment. The proposed approach provides high identification accuracy (about 0.1% for the stiffness matrix element) and is able to take into account the real shape of the link, coupling between rotational/translational deflections and joint particularities. To compute the stiffness matrix, the numerical technique has been developed, and some recommendations for optimal settings of the virtual experiments are given. In order to minimize the identification errors, the statistical data processing technique was applied. The advantages of the developed approach have been confirmed by case studies dealing with the links of parallel manipulator of the Orthoglide family, for which the identification errors have been reduced to 0.1%ANR COROUSS

    Universality theorems for configuration spaces of planar linkages

    Full text link
    We prove realizability theorems for vector-valued polynomial mappings, real-algebraic sets and compact smooth manifolds by moduli spaces of planar linkages. We also establish a relation between universality theorems for moduli spaces of mechanical linkages and projective arrangements.Comment: 45 pages, 15 figures. See also http://www.math.utah.edu/~kapovich/eprints.htm

    Kinematic calibration of Orthoglide-type mechanisms from observation of parallel leg motions

    Get PDF
    The paper proposes a new calibration method for parallel manipulators that allows efficient identification of the joint offsets using observations of the manipulator leg parallelism with respect to the base surface. The method employs a simple and low-cost measuring system, which evaluates deviation of the leg location during motions that are assumed to preserve the leg parallelism for the nominal values of the manipulator parameters. Using the measured deviations, the developed algorithm estimates the joint offsets that are treated as the most essential parameters to be identified. The validity of the proposed calibration method and efficiency of the developed numerical algorithms are confirmed by experimental results. The sensitivity of the measurement methods and the calibration accuracy are also studied

    A Laminar Cortical Model for 3D Perception of Slanted and Curved Surfaces and of 2D Images: Developement, attention, and Bistability

    Full text link
    A model of laminar visual cortical dynamics proposes how 3D boundary and surface representations of slated and curved 3D objects and 2D images arise. The 3D boundary representations emerge from interactions between non-classical horizontal receptive field interactions with intracorticcal and intercortical feedback circuits. Such non-classical interactions contextually disambiguate classical receptive field responses to ambiguous visual cues using cells that are sensitive to angles and disparity gradients with cortical areas V1 and V2. These cells are all variants of bipole grouping cells. Model simulations show how horizontal connections can develop selectively to angles, how slanted surfaces can activate 3D boundary representations that are sensitive to angles and disparity gradients, how 3D filling-in occurs across slanted surfaces, how a 2D Necker cube image can be represented in 3D, and how bistable Necker cuber percepts occur. The model also explains data about slant aftereffects and 3D neon color spreading. It shows how habituative transmitters that help to control developement also help to trigger bistable 3D percepts and slant aftereffects, and how attention can influence which of these percepts is perceived by propogating along some object boundaries.Air Force Office of Scientific Research (F49620-01-1-0397, F49620-98-1-0108); Defense Advanced Research Projects Agency and the Office of Naval Research (N0014-95-1-0409, N00014-01-1-0624, N00014-95-1-0657); National Science Foundation (IIS-97-20333

    Finite motions from periodic frameworks with added symmetry

    Get PDF
    Recent work from authors across disciplines has made substantial contributions to counting rules (Maxwell type theorems) which predict when an infinite periodic structure would be rigid or flexible while preserving the periodic pattern, as an engineering type framework, or equivalently, as an idealized molecular framework. Other work has shown that for finite frameworks, introducing symmetry modifies the previous general counts, and under some circumstances this symmetrized Maxwell type count can predict added finite flexibility in the structure. In this paper we combine these approaches to present new Maxwell type counts for the columns and rows of a modified orbit matrix for structures that have both a periodic structure and additional symmetry within the periodic cells. In a number of cases, this count for the combined group of symmetry operations demonstrates there is added finite flexibility in what would have been rigid when realized without the symmetry. Given that many crystal structures have these added symmetries, and that their flexibility may be key to their physical and chemical properties, we present a summary of the results as a way to generate further developments of both a practical and theoretic interest.Comment: 45 pages, 13 figure
    • …
    corecore