8,369 research outputs found

    Combined monitoring, decision and control model for the human operator in a command and control desk

    Get PDF
    A report is given on the ongoing efforts to mode the human operator in the context of the task during the enroute/return phases in the ground based control of multiple flights of remotely piloted vehicles (RPV). The approach employed here uses models that have their analytical bases in control theory and in statistical estimation and decision theory. In particular, it draws heavily on the modes and the concepts of the optimal control model (OCM) of the human operator. The OCM is being extended into a combined monitoring, decision, and control model (DEMON) of the human operator by infusing decision theoretic notions that make it suitable for application to problems in which human control actions are infrequent and in which monitoring and decision-making are the operator's main activities. Some results obtained with a specialized version of DEMON for the RPV control problem are included

    Prospects of a mathematical theory of human behavior in complex man-machine systems tasks

    Get PDF
    A hierarchy of human activities is derived by analyzing automobile driving in general terms. A structural description leads to a block diagram and a time-sharing computer analogy. The range of applicability of existing mathematical models is considered with respect to the hierarchy of human activities in actual complex tasks. Other mathematical tools so far not often applied to man machine systems are also discussed. The mathematical descriptions at least briefly considered here include utility, estimation, control, queueing, and fuzzy set theory as well as artificial intelligence techniques. Some thoughts are given as to how these methods might be integrated and how further work might be pursued

    A decision-theoretic approach to the display of information for time-critical decisions: The Vista project

    Get PDF
    We describe a collaborative research and development effort between the Palo Alto Laboratory of the Rockwell Science Center, Rockwell Space Operations Company, and the Propulsion Systems Section of NASA JSC to design computational tools that can manage the complexity of information displayed to human operators in high-stakes, time-critical decision contexts. We shall review an application from NASA Mission Control and describe how we integrated a probabilistic diagnostic model and a time-dependent utility model, with techniques for managing the complexity of computer displays. Then, we shall describe the behavior of VPROP, a system constructed to demonstrate promising display-management techniques. Finally, we shall describe our current research directions on the Vista 2 follow-on project

    Human Factors Considerations in System Design

    Get PDF
    Human factors considerations in systems design was examined. Human factors in automated command and control, in the efficiency of the human computer interface and system effectiveness are outlined. The following topics are discussed: human factors aspects of control room design; design of interactive systems; human computer dialogue, interaction tasks and techniques; guidelines on ergonomic aspects of control rooms and highly automated environments; system engineering for control by humans; conceptual models of information processing; information display and interaction in real time environments

    Display/control requirements for automated VTOL aircraft

    Get PDF
    A systematic design methodology for pilot displays in advanced commercial VTOL aircraft was developed and refined. The analyst is provided with a step-by-step procedure for conducting conceptual display/control configurations evaluations for simultaneous monitoring and control pilot tasks. The approach consists of three phases: formulation of information requirements, configuration evaluation, and system selection. Both the monitoring and control performance models are based upon the optimal control model of the human operator. Extensions to the conventional optimal control model required in the display design methodology include explicit optimization of control/monitoring attention; simultaneous monitoring and control performance predictions; and indifference threshold effects. The methodology was applied to NASA's experimental CH-47 helicopter in support of the VALT program. The CH-47 application examined the system performance of six flight conditions. Four candidate configurations are suggested for evaluation in pilot-in-the-loop simulations and eventual flight tests

    Engineering Agent Systems for Decision Support

    Get PDF
    This paper discusses how agent technology can be applied to the design of advanced Information Systems for Decision Support. In particular, it describes the different steps and models that are necessary to engineer Decision Support Systems based on a multiagent architecture. The approach is illustrated by a case study in the traffic management domain

    A system-theoretic, control-inspired view and approach to process safety

    Get PDF
    Accidents in the process industry continue to occur, and we do not seem to be making much progress in reducing them (Venkatasubramanian, 2011). Postmortem analysis has indicated that they were preventable and had similar systemic causes (Kletz, 2003). Why do we fail to learn from the past and make adequate changes to prevent their reappearance? A variety of explanations have been offered; operators' faults, component failures, lax supervision of operations, poor maintenance, etc. All of these explanations, and many others, have been exhaustively studied, analyzed, “systematized” into causal groups, and a variety of approaches have been developed to address them. Even so, they still occur with significant numbers of fatalities and injured people, with significant disruption of productive operations and frequently extensive destruction of the surrounding environment, both physical and social

    Towards human control of robot swarms

    Get PDF
    In this paper we investigate principles of swarm control that enable a human operator to exert influence on and control large swarms of robots. We present two principles, coined selection and beacon control, that differ with respect to their temporal and spatial persistence. The former requires active selection of groups of robots while the latter exerts a passive influence on nearby robots. Both principles are implemented in a testbed in which operators exert influence on a robot swarm by switching between a set of behaviors ranging from trivial behaviors up to distributed autonomous algorithms. Performance is tested in a series of complex foraging tasks in environments with different obstacles ranging from open to cluttered and structured. The robotic swarm has only local communication and sensing capabilities with the number of robots ranging from 50 to 200. Experiments with human operators utilizing either selection or beacon control are compared with each other and to a simple autonomous swarm with regard to performance, adaptation to complex environments, and scalability to larger swarms. Our results show superior performance of autonomous swarms in open environments, of selection control in complex environments, and indicate a potential for scaling beacon control to larger swarms

    A novel qualitative prospective methodology to assess human error during accident sequences

    Get PDF
    Numerous theoretical models and techniques to assess human error were developed since the 60's. Most of these models were developed for the nuclear, military, and aviation sectors. These methods have the following weaknesses that limit their use in industry: the lack of analysis of underlying causal cognitive mechanisms, need of retrospective data for implementation, strong dependence on expert judgment, focus on a particular type of error, and/or analysis of operator behaviour and decision-making without considering the role of the system in such decisions. The purpose of the present research is to develop a qualitative prospective methodology that does not depend exclusively on retrospective information, that does not require expert judgment for implementation and that allows predicting potential sequences of accidents before they occur. It has been proposed for new (or existent) small and medium- scale facilities, whose processes are simple. To the best of our knowledge, a methodology that meets these requirements has not been reported in literature thus far. The methodology proposed in this study was applied to the methanol storage area of a biodiesel facility. It could predict potential sequences of accidents, through the analysis of information provided by different system devices and the study of the possible deviations of operators in decision-making. It also enabled the identification of the shortcomings in the human-machine interface and proposed an optimization of the current configuration.Fil: Calvo Olivares, Romina Daniela. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Cuyo. Facultad de Ingenieria. Instituto de Capacitación Especial y Desarrollo de Ingeniería Asistida por Computadora; ArgentinaFil: Rivera, Selva Soledad. Universidad Nacional de Cuyo. Facultad de Ingenieria. Instituto de Capacitación Especial y Desarrollo de Ingeniería Asistida por Computadora; ArgentinaFil: Núñez Mc Leod, Jorge Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Cuyo. Facultad de Ingenieria. Instituto de Capacitación Especial y Desarrollo de Ingeniería Asistida por Computadora; Argentin

    Explaining and Refining Decision-Theoretic Choices

    Get PDF
    As the need to make complex choices among competing alternative actions is ubiquitous, the reasoning machinery of many intelligent systems will include an explicit model for making choices. Decision analysis is particularly useful for modelling such choices, and its potential use in intelligent systems motivates the construction of facilities for automatically explaining decision-theoretic choices and for helping users to incrementally refine the knowledge underlying them. The proposed thesis addresses the problem of providing such facilities. Specifically, we propose the construction of a domain-independent facility called UTIL, for explaining and refining a restricted but widely applicable decision-theoretic model called the additive multi-attribute value model. In this proposal we motivate the task, address the related issues, and present preliminary solutions in the context of examples from the domain of intelligent process control
    corecore