9,432 research outputs found

    Partitioning into Isomorphic or Connected Subgraphs

    Get PDF
    This thesis deals mainly with the partitioning and connectedness of graphs. First, we show that the problem of partitioning the nodes of a graph into a specific number of subsets such that the induced subgraphs on these sets are isomorphic to one another is NP-complete. If the induced subgraphs have to be connected, the problem remains NP-complete. Then we inspect some special graph classes for which the problem is solvable in polynomial time. Afterwards, we deal with the problem of defining a polytope by incidence vectors of nodes, which induce a connected graph. We inspect some facet-defining inequalities and their general structure. For some graph classes we state the full description. We then proceed to the problem of partitioning the nodes of a graph into a given number of parts such that the induced graphs are connected. For the corresponding polytope we show the dimension and some facet defining inequalities. This theoretical inspection is advanced by the problem of partitioning a graph into different parts such that the parts induce a connected graph in order to maximize the induced cut. We introduce different ideas for solving this problem in SCIP and show the numerical results. This leads to interesting problems on MIPs in general. As the problem in literature generally deals with the feasible region, we focus on the objective function. To do that, we inspect the problem of finding MIPs for problems with nonlinear objective functions. We discuss properties and requirements showing the existence or non-existence of particular formulations. Lastly, we inspect the problem of partitioning the nodes of a graph such that all but one class are isomorphic. This problem becomes interesting if the part not inducing the isomorphism is minimized. For this purpose we also introduce a technique, which generates the parts by brute-force. Instead of partitioning the graph into isomorphic parts, we proceed to the problem of similar graphs. In this case we inspect different similarities and show algorithms which implement these

    P?=NP as minimization of degree 4 polynomial, integration or Grassmann number problem, and new graph isomorphism problem approaches

    Full text link
    While the P vs NP problem is mainly approached form the point of view of discrete mathematics, this paper proposes reformulations into the field of abstract algebra, geometry, fourier analysis and of continuous global optimization - which advanced tools might bring new perspectives and approaches for this question. The first one is equivalence of satisfaction of 3-SAT problem with the question of reaching zero of a nonnegative degree 4 multivariate polynomial (sum of squares), what could be tested from the perspective of algebra by using discriminant. It could be also approached as a continuous global optimization problem inside [0,1]n[0,1]^n, for example in physical realizations like adiabatic quantum computers. However, the number of local minima usually grows exponentially. Reducing to degree 2 polynomial plus constraints of being in {0,1}n\{0,1\}^n, we get geometric formulations as the question if plane or sphere intersects with {0,1}n\{0,1\}^n. There will be also presented some non-standard perspectives for the Subset-Sum, like through convergence of a series, or zeroing of 02πicos(φki)dφ\int_0^{2\pi} \prod_i \cos(\varphi k_i) d\varphi fourier-type integral for some natural kik_i. The last discussed approach is using anti-commuting Grassmann numbers θi\theta_i, making (Adiag(θi))n(A \cdot \textrm{diag}(\theta_i))^n nonzero only if AA has a Hamilton cycle. Hence, the P\neNP assumption implies exponential growth of matrix representation of Grassmann numbers. There will be also discussed a looking promising algebraic/geometric approach to the graph isomorphism problem -- tested to successfully distinguish strongly regular graphs with up to 29 vertices.Comment: 19 pages, 8 figure
    corecore