865,000 research outputs found

    On the finite size corrections to some random matching problems

    Full text link
    We get back to the computation of the leading finite size corrections to some random link matching problems, first adressed by Mezard and Parisi [J. Physique 48 (1987) 1451-1459]. In the so-called bipartite case, their result is in contradiction with subsequent works. We show that they made some mistakes, and correcting them, we get the expected result. In the non bipartite case, we agree with their result but push the analytical treatment furtherComment: 22 pages, 3 figure

    The joy of matching

    Get PDF
    Here, the authors discuss matching problems and how the Gale-Shapley algorithm solves them, while also explaining some matching techniques

    Matching under Preferences

    Get PDF
    Matching theory studies how agents and/or objects from different sets can be matched with each other while taking agents\u2019 preferences into account. The theory originated in 1962 with a celebrated paper by David Gale and Lloyd Shapley (1962), in which they proposed the Stable Marriage Algorithm as a solution to the problem of two-sided matching. Since then, this theory has been successfully applied to many real-world problems such as matching students to universities, doctors to hospitals, kidney transplant patients to donors, and tenants to houses. This chapter will focus on algorithmic as well as strategic issues of matching theory. Many large-scale centralized allocation processes can be modelled by matching problems where agents have preferences over one another. For example, in China, over 10 million students apply for admission to higher education annually through a centralized process. The inputs to the matching scheme include the students\u2019 preferences over universities, and vice versa, and the capacities of each university. The task is to construct a matching that is in some sense optimal with respect to these inputs. Economists have long understood the problems with decentralized matching markets, which can suffer from such undesirable properties as unravelling, congestion and exploding offers (see Roth and Xing, 1994, for details). For centralized markets, constructing allocations by hand for large problem instances is clearly infeasible. Thus centralized mechanisms are required for automating the allocation process. Given the large number of agents typically involved, the computational efficiency of a mechanism's underlying algorithm is of paramount importance. Thus we seek polynomial-time algorithms for the underlying matching problems. Equally important are considerations of strategy: an agent (or a coalition of agents) may manipulate their input to the matching scheme (e.g., by misrepresenting their true preferences or underreporting their capacity) in order to try to improve their outcome. A desirable property of a mechanism is strategyproofness, which ensures that it is in the best interests of an agent to behave truthfully

    The exchange-stable marriage problem

    Get PDF
    In this paper we consider instances of stable matching problems, namely the classical stable marriage (SM) and stable roommates (SR) problems and their variants. In such instances we consider a stability criterion that has recently been proposed, that of <i>exchange-stability</i>. In particular, we prove that ESM — the problem of deciding, given an SM instance, whether an exchange-stable matching exists — is NP-complete. This result is in marked contrast with Gale and Shapley's classical linear-time algorithm for finding a stable matching in an instance of SM. We also extend the result for ESM to the SR case. Finally, we study some variants of ESM under weaker forms of exchange-stability, presenting both polynomial-time solvability and NP-completeness results for the corresponding existence questions
    corecore