55 research outputs found

    Pythagorean fuzzy Muirhead mean operators in multiple attribute decision making for evaluating of emerging technology commercialization

    Get PDF
    In today’s world, with the advancement of technology, several emerging technologies are coming. Faced with massive emerging technologies which are the component of the technology pool, how to identify the commercial potential of emerging technologies in theory and practice is an important problem. The scientific approach to the selection of these emerging technologies is one of the main objectives of the research. In this paper, we extend Muirhead mean (MM) operator and dual MM (DMM) operator to process the Pythagorean fuzzy numbers (PFNs) and then to solve the multiple attribute decision making (MADM) problems. Firstly, we develop some Pythagorean fuzzy Muirhead mean operators by extending MM and DMM operators to Pythagorean fuzzy information. Then, we prove some properties and discuss some special cases with respect to the parameter vector. Moreover, we present some new methods to deal with MADM problems with the PFNs based on the proposed MM and DMM operators. Finally, we verify the validity and reliability of our methods by using an application example for potential evaluation of emerging technology commercialization, and analyze the advantages of our methods by comparing with other existing method

    Some Cosine Similarity Measures and Distance Measures between Complex q-Rung Orthopair Fuzzy Sets and Their Applications

    Get PDF
    As a modification of the q-rung orthopair fuzzy sets (QROFSs), complex QROFSs (CQROFSs) can describe the inaccurate information by complex-valued truth grades with an additional term, named as phase term. Cosine similarity measures (CSMs) and distance measures (DMs) are important tools to verify the grades of discrimination between the two sets. In this manuscript, we develop some CSMs and DMs for CQROFSs. Firstly, the CSMs and Euclidean DMs (EDMs) for CQROFSs and their properties are investigated. Because the CSMs do not keep the axiom of similarity measure (SM), we investigate a technique to develop other SMs based on CQROFSs, and they meet the axiom of the SMs. Moreover, we propose a cosine DM (CDM) based on CQROFSs by considering the interrelationship among the SMs and DMs, then we propose an extended TOPSIS method to solve the multi-attribute decision-making problems. Finally, we provide some sensible examples to demonstrate the practicality and efficiency of the suggested procedure, at the same time, the graphical representations of the developed measures are also utilized in this manuscript

    Algebraic Structures of Neutrosophic Triplets, Neutrosophic Duplets, or Neutrosophic Multisets

    Get PDF
    Neutrosophy (1995) is a new branch of philosophy that studies triads of the form (, , ), where is an entity {i.e. element, concept, idea, theory, logical proposition, etc.}, is the opposite of , while is the neutral (or indeterminate) between them, i.e., neither nor .Based on neutrosophy, the neutrosophic triplets were founded, which have a similar form (x, neut(x), anti(x)), that satisfy several axioms, for each element x in a given set.This collective book presents original research papers by many neutrosophic researchers from around the world, that report on the state-of-the-art and recent advancements of neutrosophic triplets, neutrosophic duplets, neutrosophic multisets and their algebraic structures – that have been defined recently in 2016 but have gained interest from world researchers. Connections between classical algebraic structures and neutrosophic triplet / duplet / multiset structures are also studied. And numerous neutrosophic applications in various fields, such as: multi-criteria decision making, image segmentation, medical diagnosis, fault diagnosis, clustering data, neutrosophic probability, human resource management, strategic planning, forecasting model, multi-granulation, supplier selection problems, typhoon disaster evaluation, skin lesson detection, mining algorithm for big data analysis, etc

    Fuzzy Techniques for Decision Making 2018

    Get PDF
    Zadeh's fuzzy set theory incorporates the impreciseness of data and evaluations, by imputting the degrees by which each object belongs to a set. Its success fostered theories that codify the subjectivity, uncertainty, imprecision, or roughness of the evaluations. Their rationale is to produce new flexible methodologies in order to model a variety of concrete decision problems more realistically. This Special Issue garners contributions addressing novel tools, techniques and methodologies for decision making (inclusive of both individual and group, single- or multi-criteria decision making) in the context of these theories. It contains 38 research articles that contribute to a variety of setups that combine fuzziness, hesitancy, roughness, covering sets, and linguistic approaches. Their ranges vary from fundamental or technical to applied approaches

    Group Decision Algorithm for Aged Healthcare Product Purchase Under q-Rung Picture Normal Fuzzy Environment Using Heronian Mean Operator

    Get PDF
    With the intensification of the aging, the health issue of the elderly is arousing public concern increasingly. Various healthcare products for the elderly are emerging from the market, thus how to select suitable aged healthcare product is critical to the well-being of the elderly. In the literature, nonetheless, a comprehensive and standardized evaluation framework to support healthcare product purchase decision for the aged is currently lacking. This paper proposes a novel group decision-making method to aid the decision-making of aged healthcare product purchase based on q-rung picture normal fuzzy Heronian mean (q-RPtNoFHM) operators. In it, firstly, a new fuzzy variable called the q-rung picture normal fuzzy set (q-RPtNoFS) is defined to reasonably describe different responses to healthcare product evaluation, for which, some definitions including operational laws, a score function, and an accuracy function of q-RPtNoFSs are introduced. Then, two q-RPtNoFHM operators are presented to aggregate group decision information. In addition, some properties of q-RPtNoFHM operators, such as monotonicity, commutativity, and idempotency, are discussed. Finally, an example on antihypertensive drugs purchase is gave to illustrate the practicality of the proposed method, and conduct sensitivity analysis to analyze the effectiveness and flexibility of proposed methods

    Interval-valued probabilistic hesitant fuzzy set-based framework for group decision-making with unknown weight information

    Full text link
    This paper aims at presenting a new decision framework under an interval-valued probabilistic hesitant fuzzy set (IVPHFS) context with fully unknown weight information. At first, the weights of the attributes are determined by using the interval-valued probabilistic hesitant deviation method. Later, the DMs’ weights are determined by using a recently proposed evidence theory-based Bayesian approximation method under the IVPHFS context. The preferences are aggregated by using a newly extended generalized Maclaurin symmetric mean operator under the IVPHFS context. Further, the alternatives are prioritized by using an interval-valued probabilistic hesitant complex proportional assessment method. From the proposed framework, the following significances are inferred; for example, it uses a generalized preference structure that provides ease and flexibility to the decision-makers (DMs) during preference elicitation; weights are calculated systematically to mitigate inaccuracies and subjective randomness; interrelationship among attributes are effectively captured; and alternatives are prioritized from different angles by properly considering the nature of the attributes. Finally, the applicability of the framework is validated by using green supplier selection for a leading bakery company, and from the comparison, it is observed that the framework is useful, practical and systematic for rational decision-making and robust and consistent from sensitivity analysis of weights and Spearman correlation of rank values, respectively

    Algebraic structures of neutrosophic triplets, neutrosophic duplets, or neutrosophic multisets. Volume II

    Get PDF
    The topics approached in this collection of papers are: neutrosophic sets; neutrosophic logic; generalized neutrosophic set; neutrosophic rough set; multigranulation neutrosophic rough set (MNRS); neutrosophic cubic sets; triangular fuzzy neutrosophic sets (TFNSs); probabilistic single-valued (interval) neutrosophic hesitant fuzzy set; neutro-homomorphism; neutrosophic computation; quantum computation; neutrosophic association rule; data mining; big data; oracle Turing machines; recursive enumerability; oracle computation; interval number; dependent degree; possibility degree; power aggregation operators; multi-criteria group decision-making (MCGDM); expert set; soft sets; LA-semihypergroups; single valued trapezoidal neutrosophic number; inclusion relation; Q-linguistic neutrosophic variable set; vector similarity measure; fundamental neutro-homomorphism theorem; neutro-isomorphism theorem; quasi neutrosophic triplet loop; quasi neutrosophic triplet group; BE-algebra; cloud model; fuzzy measure; clustering algorithm; and many more

    Solving renewable energy source selection problems using a q-rung orthopair fuzzy-based integrated decision-making approach

    Full text link
    This paper proposes an integrated decision-making framework for the systematic selection of a renewable energy source (RES) from a set of RESs based on sustainability attributes. A real case study of RES selection in Karnataka, India, using the framework is demonstrated, and the results are compared with state-of-the-art methods. The main reason for developing this framework is to handle uncertainty and vagueness effectively by reducing human intervention. Systematic selection of RESs also reduces inaccuracies and promotes rational decision-making. In this paper, q-rung orthopair fuzzy information is adopted to minimize subjective randomness by providing a flexible and generalized preference style. Further, the study found systematic approaches for imputing missing values, calculating attributes’ and decision-makers’ weights, aggregation or preferences, and prioritizing RESs, which are integrated into the framework. Comparing the proposed framework with state-of-the-art-methods shows that (i) biomass and solar are suitable RESs for the process under consideration in Karnataka, (ii) the proposed framework is consistent with state-of-the-art methods, (iii) the proposed framework is sufficiently stable even after weights of attributes and decision makers are altered, and (iv) the proposed framework produces broad and sensible rank values for efficient backup management. These results validate the significance of the proposed framework
    • …
    corecore