3,822 research outputs found

    AGM-Style Revision of Beliefs and Intentions from a Database Perspective (Preliminary Version)

    Get PDF
    We introduce a logic for temporal beliefs and intentions based on Shoham's database perspective. We separate strong beliefs from weak beliefs. Strong beliefs are independent from intentions, while weak beliefs are obtained by adding intentions to strong beliefs and everything that follows from that. We formalize coherence conditions on strong beliefs and intentions. We provide AGM-style postulates for the revision of strong beliefs and intentions. We show in a representation theorem that a revision operator satisfying our postulates can be represented by a pre-order on interpretations of the beliefs, together with a selection function for the intentions

    Belief change in branching time: AGM-consistency and iterated revision

    Get PDF
    We study belief change branching-time structures. First, we identify a property of branching-time frames that is equivalent to AGM-consistency, which is defined as follows. A frame is AGM-consistent if the partial belief revision function associated with an arbitrary state-instant pair and an arbitrary model based on that frame can be extended to a full belief revision function that satisfies the AGM postulates. Second, we provide a set of modal axioms that characterize the class of AGM-consistent frames within the modal logic introduced in [Bonanno, Axiomatic characterization of the AGM theory of belief revision in a temporal logic, Artificial Intelligence, 2007]. Third, we introduce a generalization of AGM belief revision functions that allows a clear statement of principles of iterated belief revision and discuss iterated revision both semantically and syntactically.iterated belief revision, branching time, information, belief, modal logic, AGM belief revision

    Reason Maintenance - State of the Art

    Get PDF
    This paper describes state of the art in reason maintenance with a focus on its future usage in the KiWi project. To give a bigger picture of the field, it also mentions closely related issues such as non-monotonic logic and paraconsistency. The paper is organized as follows: first, two motivating scenarios referring to semantic wikis are presented which are then used to introduce the different reason maintenance techniques

    Forgetting complex propositions

    Full text link
    This paper uses possible-world semantics to model the changes that may occur in an agent's knowledge as she loses information. This builds on previous work in which the agent may forget the truth-value of an atomic proposition, to a more general case where she may forget the truth-value of a propositional formula. The generalization poses some challenges, since in order to forget whether a complex proposition π\pi is the case, the agent must also lose information about the propositional atoms that appear in it, and there is no unambiguous way to go about this. We resolve this situation by considering expressions of the form [π]φ[\boldsymbol{\ddagger} \pi]\varphi, which quantify over all possible (but minimal) ways of forgetting whether π\pi. Propositional atoms are modified non-deterministically, although uniformly, in all possible worlds. We then represent this within action model logic in order to give a sound and complete axiomatization for a logic with knowledge and forgetting. Finally, some variants are discussed, such as when an agent forgets π\pi (rather than forgets whether π\pi) and when the modification of atomic facts is done non-uniformly throughout the model

    Preferential Multi-Context Systems

    Full text link
    Multi-context systems (MCS) presented by Brewka and Eiter can be considered as a promising way to interlink decentralized and heterogeneous knowledge contexts. In this paper, we propose preferential multi-context systems (PMCS), which provide a framework for incorporating a total preorder relation over contexts in a multi-context system. In a given PMCS, its contexts are divided into several parts according to the total preorder relation over them, moreover, only information flows from a context to ones of the same part or less preferred parts are allowed to occur. As such, the first ll preferred parts of an PMCS always fully capture the information exchange between contexts of these parts, and then compose another meaningful PMCS, termed the ll-section of that PMCS. We generalize the equilibrium semantics for an MCS to the (maximal) ll_{\leq}-equilibrium which represents belief states at least acceptable for the ll-section of an PMCS. We also investigate inconsistency analysis in PMCS and related computational complexity issues
    corecore