24,544 research outputs found

    Plug-in to fear: game biosensors and negative physiological responses to music

    Get PDF
    The games industry is beginning to embark on an ambitious journey into the world of biometric gaming in search of more exciting and immersive gaming experiences. Whether or not biometric game technologies hold the key to unlock the “ultimate gaming experience” hinges not only on technological advancements alone but also on the game industry’s understanding of physiological responses to stimuli of different kinds, and its ability to interpret physiological data in terms of indicative meaning. With reference to horror genre games and music in particular, this article reviews some of the scientific literature relating to specific physiological responses induced by “fearful” or “unpleasant” musical stimuli, and considers some of the challenges facing the games industry in its quest for the ultimate “plugged-in” experience

    Musical Robots For Children With ASD Using A Client-Server Architecture

    Get PDF
    Presented at the 22nd International Conference on Auditory Display (ICAD-2016)People with Autistic Spectrum Disorders (ASD) are known to have difficulty recognizing and expressing emotions, which affects their social integration. Leveraging the recent advances in interactive robot and music therapy approaches, and integrating both, we have designed musical robots that can facilitate social and emotional interactions of children with ASD. Robots communicate with children with ASD while detecting their emotional states and physical activities and then, make real-time sonification based on the interaction data. Given that we envision the use of multiple robots with children, we have adopted a client-server architecture. Each robot and sensing device plays a role as a terminal, while the sonification server processes all the data and generates harmonized sonification. After describing our goals for the use of sonification, we detail the system architecture and on-going research scenarios. We believe that the present paper offers a new perspective on the sonification application for assistive technologies

    Toward a model of computational attention based on expressive behavior: applications to cultural heritage scenarios

    Get PDF
    Our project goals consisted in the development of attention-based analysis of human expressive behavior and the implementation of real-time algorithm in EyesWeb XMI in order to improve naturalness of human-computer interaction and context-based monitoring of human behavior. To this aim, perceptual-model that mimic human attentional processes was developed for expressivity analysis and modeled by entropy. Museum scenarios were selected as an ecological test-bed to elaborate three experiments that focus on visitor profiling and visitors flow regulation

    Predictive biometrics: A review and analysis of predicting personal characteristics from biometric data

    Get PDF
    Interest in the exploitation of soft biometrics information has continued to develop over the last decade or so. In comparison with traditional biometrics, which focuses principally on person identification, the idea of soft biometrics processing is to study the utilisation of more general information regarding a system user, which is not necessarily unique. There are increasing indications that this type of data will have great value in providing complementary information for user authentication. However, the authors have also seen a growing interest in broadening the predictive capabilities of biometric data, encompassing both easily definable characteristics such as subject age and, most recently, `higher level' characteristics such as emotional or mental states. This study will present a selective review of the predictive capabilities, in the widest sense, of biometric data processing, providing an analysis of the key issues still adequately to be addressed if this concept of predictive biometrics is to be fully exploited in the future

    Affective Medicine: a review of Affective Computing efforts in Medical Informatics

    Get PDF
    Background: Affective computing (AC) is concerned with emotional interactions performed with and through computers. It is defined as “computing that relates to, arises from, or deliberately influences emotions”. AC enables investigation and understanding of the relation between human emotions and health as well as application of assistive and useful technologies in the medical domain. Objectives: 1) To review the general state of the art in AC and its applications in medicine, and 2) to establish synergies between the research communities of AC and medical informatics. Methods: Aspects related to the human affective state as a determinant of the human health are discussed, coupled with an illustration of significant AC research and related literature output. Moreover, affective communication channels are described and their range of application fields is explored through illustrative examples. Results: The presented conferences, European research projects and research publications illustrate the recent increase of interest in the AC area by the medical community. Tele-home healthcare, AmI, ubiquitous monitoring, e-learning and virtual communities with emotionally expressive characters for elderly or impaired people are few areas where the potential of AC has been realized and applications have emerged. Conclusions: A number of gaps can potentially be overcome through the synergy of AC and medical informatics. The application of AC technologies parallels the advancement of the existing state of the art and the introduction of new methods. The amount of work and projects reviewed in this paper witness an ambitious and optimistic synergetic future of the affective medicine field
    • 

    corecore