2,661 research outputs found

    The Narrow Conception of Computational Psychology

    Get PDF
    One particularly successful approach to modeling within cognitive science is computational psychology. Computational psychology explores psychological processes by building and testing computational models with human data. In this paper, it is argued that a specific approach to understanding computation, what is called the ‘narrow conception’, has problematically limited the kinds of models, theories, and explanations that are offered within computational psychology. After raising two problems for the narrow conception, an alternative, ‘wide approach’ to computational psychology is proposed

    Induction of First-Order Decision Lists: Results on Learning the Past Tense of English Verbs

    Full text link
    This paper presents a method for inducing logic programs from examples that learns a new class of concepts called first-order decision lists, defined as ordered lists of clauses each ending in a cut. The method, called FOIDL, is based on FOIL (Quinlan, 1990) but employs intensional background knowledge and avoids the need for explicit negative examples. It is particularly useful for problems that involve rules with specific exceptions, such as learning the past-tense of English verbs, a task widely studied in the context of the symbolic/connectionist debate. FOIDL is able to learn concise, accurate programs for this problem from significantly fewer examples than previous methods (both connectionist and symbolic).Comment: See http://www.jair.org/ for any accompanying file

    SCREEN: Learning a Flat Syntactic and Semantic Spoken Language Analysis Using Artificial Neural Networks

    Get PDF
    In this paper, we describe a so-called screening approach for learning robust processing of spontaneously spoken language. A screening approach is a flat analysis which uses shallow sequences of category representations for analyzing an utterance at various syntactic, semantic and dialog levels. Rather than using a deeply structured symbolic analysis, we use a flat connectionist analysis. This screening approach aims at supporting speech and language processing by using (1) data-driven learning and (2) robustness of connectionist networks. In order to test this approach, we have developed the SCREEN system which is based on this new robust, learned and flat analysis. In this paper, we focus on a detailed description of SCREEN's architecture, the flat syntactic and semantic analysis, the interaction with a speech recognizer, and a detailed evaluation analysis of the robustness under the influence of noisy or incomplete input. The main result of this paper is that flat representations allow more robust processing of spontaneous spoken language than deeply structured representations. In particular, we show how the fault-tolerance and learning capability of connectionist networks can support a flat analysis for providing more robust spoken-language processing within an overall hybrid symbolic/connectionist framework.Comment: 51 pages, Postscript. To be published in Journal of Artificial Intelligence Research 6(1), 199

    Machine learning and its applications in reliability analysis systems

    Get PDF
    In this thesis, we are interested in exploring some aspects of Machine Learning (ML) and its application in the Reliability Analysis systems (RAs). We begin by investigating some ML paradigms and their- techniques, go on to discuss the possible applications of ML in improving RAs performance, and lastly give guidelines of the architecture of learning RAs. Our survey of ML covers both levels of Neural Network learning and Symbolic learning. In symbolic process learning, five types of learning and their applications are discussed: rote learning, learning from instruction, learning from analogy, learning from examples, and learning from observation and discovery. The Reliability Analysis systems (RAs) presented in this thesis are mainly designed for maintaining plant safety supported by two functions: risk analysis function, i.e., failure mode effect analysis (FMEA) ; and diagnosis function, i.e., real-time fault location (RTFL). Three approaches have been discussed in creating the RAs. According to the result of our survey, we suggest currently the best design of RAs is to embed model-based RAs, i.e., MORA (as software) in a neural network based computer system (as hardware). However, there are still some improvement which can be made through the applications of Machine Learning. By implanting the 'learning element', the MORA will become learning MORA (La MORA) system, a learning Reliability Analysis system with the power of automatic knowledge acquisition and inconsistency checking, and more. To conclude our thesis, we propose an architecture of La MORA

    Modelling Identity Rules with Neural Networks

    Get PDF
    In this paper, we show that standard feed-forward and recurrent neural networks fail to learn abstract patterns based on identity rules. We propose Repetition Based Pattern (RBP) extensions to neural network structures that solve this problem and answer, as well as raise, questions about integrating structures for inductive bias into neural networks. Examples of abstract patterns are the sequence patterns ABA and ABB where A or B can be any object. These were introduced by Marcus et al (1999) who also found that 7 month old infants recognise these patterns in sequences that use an unfamiliar vocabulary while simple recurrent neural networks do not. This result has been contested in the literature but it is confirmed by our experiments. We also show that the inability to generalise extends to different, previously untested, settings. We propose a new approach to modify standard neural network architectures, called Repetition Based Patterns (RBP) with different variants for classification and prediction. Our experiments show that neural networks with the appropriate RBP structure achieve perfect classification and prediction performance on synthetic data, including mixed concrete and abstract patterns. RBP also improves neural network performance in experiments with real-world sequence prediction tasks. We discuss these finding in terms of challenges for neural network models and identify consequences from this result in terms of developing inductive biases for neural network learning

    First-order logic learning in artificial neural networks

    Get PDF
    Artificial Neural Networks have previously been applied in neuro-symbolic learning to learn ground logic program rules. However, there are few results of learning relations using neuro-symbolic learning. This paper presents the system PAN, which can learn relations. The inputs to PAN are one or more atoms, representing the conditions of a logic rule, and the output is the conclusion of the rule. The symbolic inputs may include functional terms of arbitrary depth and arity, and the output may include terms constructed from the input functors. Symbolic inputs are encoded as an integer using an invertible encoding function, which is used in reverse to extract the output terms. The main advance of this system is a convention to allow construction of Artificial Neural Networks able to learn rules with the same power of expression as first order definite clauses. The system is tested on three examples and the results are discussed

    Explaining Trained Neural Networks with Semantic Web Technologies: First Steps

    Get PDF
    The ever increasing prevalence of publicly available structured data on the World Wide Web enables new applications in a variety of domains. In this paper, we provide a conceptual approach that leverages such data in order to explain the input-output behavior of trained artificial neural networks. We apply existing Semantic Web technologies in order to provide an experimental proof of concept
    • …
    corecore