19,420 research outputs found

    Argument Component Classification for Classroom Discussions

    Full text link
    This paper focuses on argument component classification for transcribed spoken classroom discussions, with the goal of automatically classifying student utterances into claims, evidence, and warrants. We show that an existing method for argument component classification developed for another educationally-oriented domain performs poorly on our dataset. We then show that feature sets from prior work on argument mining for student essays and online dialogues can be used to improve performance considerably. We also provide a comparison between convolutional neural networks and recurrent neural networks when trained under different conditions to classify argument components in classroom discussions. While neural network models are not always able to outperform a logistic regression model, we were able to gain some useful insights: convolutional networks are more robust than recurrent networks both at the character and at the word level, and specificity information can help boost performance in multi-task training

    Seeing Convolution Through the Eyes of Finite Transformation Semigroup Theory: An Abstract Algebraic Interpretation of Convolutional Neural Networks

    Full text link
    Researchers are actively trying to gain better insights into the representational properties of convolutional neural networks for guiding better network designs and for interpreting a network's computational nature. Gaining such insights can be an arduous task due to the number of parameters in a network and the complexity of a network's architecture. Current approaches of neural network interpretation include Bayesian probabilistic interpretations and information theoretic interpretations. In this study, we take a different approach to studying convolutional neural networks by proposing an abstract algebraic interpretation using finite transformation semigroup theory. Specifically, convolutional layers are broken up and mapped to a finite space. The state space of the proposed finite transformation semigroup is then defined as a single element within the convolutional layer, with the acting elements defined by surrounding state elements combined with convolution kernel elements. Generators of the finite transformation semigroup are defined to complete the interpretation. We leverage this approach to analyze the basic properties of the resulting finite transformation semigroup to gain insights on the representational properties of convolutional neural networks, including insights into quantized network representation. Such a finite transformation semigroup interpretation can also enable better understanding outside of the confines of fixed lattice data structures, thus useful for handling data that lie on irregular lattices. Furthermore, the proposed abstract algebraic interpretation is shown to be viable for interpreting convolutional operations within a variety of convolutional neural network architectures.Comment: 9 page

    Topology and Prediction Focused Research on Graph Convolutional Neural Networks

    Full text link
    Important advances have been made using convolutional neural network (CNN) approaches to solve complicated problems in areas that rely on grid structured data such as image processing and object classification. Recently, research on graph convolutional neural networks (GCNN) has increased dramatically as researchers try to replicate the success of CNN for graph structured data. Unfortunately, traditional CNN methods are not readily transferable to GCNN, given the irregularity and geometric complexity of graphs. The emerging field of GCNN is further complicated by research papers that differ greatly in their scope, detail, and level of academic sophistication needed by the reader. The present paper provides a review of some basic properties of GCNN. As a guide to the interested reader, recent examples of GCNN research are then grouped according to techniques that attempt to uncover the underlying topology of the graph model and those that seek to generalize traditional CNN methods on graph data to improve prediction of class membership. Discrete Signal Processing on Graphs (DSPg) is used as a theoretical framework to better understand some of the performance gains and limitations of these recent GCNN approaches. A brief discussion of Topology Adaptive Graph Convolutional Networks (TAGCN) is presented as an approach motivated by DSPg and future research directions using this approach are briefly discussed

    Deep Learning on Operational Facility Data Related to Large-Scale Distributed Area Scientific Workflows

    Full text link
    Distributed computing platforms provide a robust mechanism to perform large-scale computations by splitting the task and data among multiple locations, possibly located thousands of miles apart geographically. Although such distribution of resources can lead to benefits, it also comes with its associated problems such as rampant duplication of file transfers increasing congestion, long job completion times, unexpected site crashing, suboptimal data transfer rates, unpredictable reliability in a time range, and suboptimal usage of storage elements. In addition, each sub-system becomes a potential failure node that can trigger system wide disruptions. In this vision paper, we outline our approach to leveraging Deep Learning algorithms to discover solutions to unique problems that arise in a system with computational infrastructure that is spread over a wide area. The presented vision, motivated by a real scientific use case from Belle II experiments, is to develop multilayer neural networks to tackle forecasting, anomaly detection and optimization challenges in a complex and distributed data movement environment. Through this vision based on Deep Learning principles, we aim to achieve reduced congestion events, faster file transfer rates, and enhanced site reliability

    Building effective deep neural network architectures one feature at a time

    Full text link
    Successful training of convolutional neural networks is often associated with sufficiently deep architectures composed of high amounts of features. These networks typically rely on a variety of regularization and pruning techniques to converge to less redundant states. We introduce a novel bottom-up approach to expand representations in fixed-depth architectures. These architectures start from just a single feature per layer and greedily increase width of individual layers to attain effective representational capacities needed for a specific task. While network growth can rely on a family of metrics, we propose a computationally efficient version based on feature time evolution and demonstrate its potency in determining feature importance and a networks' effective capacity. We demonstrate how automatically expanded architectures converge to similar topologies that benefit from lesser amount of parameters or improved accuracy and exhibit systematic correspondence in representational complexity with the specified task. In contrast to conventional design patterns with a typical monotonic increase in the amount of features with increased depth, we observe that CNNs perform better when there is more learnable parameters in intermediate, with falloffs to earlier and later layers

    Demand Forecasting from Spatiotemporal Data with Graph Networks and Temporal-Guided Embedding

    Full text link
    Short-term demand forecasting models commonly combine convolutional and recurrent layers to extract complex spatiotemporal patterns in data. Long-term histories are also used to consider periodicity and seasonality patterns as time series data. In this study, we propose an efficient architecture, Temporal-Guided Network (TGNet), which utilizes graph networks and temporal-guided embedding. Graph networks extract invariant features to permutations of adjacent regions instead of convolutional layers. Temporal-guided embedding explicitly learns temporal contexts from training data and is substituted for the input of long-term histories from days/weeks ago. TGNet learns an autoregressive model, conditioned on temporal contexts of forecasting targets from temporal-guided embedding. Finally, our model achieves competitive performances with other baselines on three spatiotemporal demand dataset from real-world, but the number of trainable parameters is about 20 times smaller than a state-of-the-art baseline. We also show that temporal-guided embedding learns temporal contexts as intended and TGNet has robust forecasting performances even to atypical event situations.Comment: NeurIPS 2018 Workshop on Modeling and Decision-Making in the Spatiotemporal Domai

    Hierarchical internal representation of spectral features in deep convolutional networks trained for EEG decoding

    Full text link
    Recently, there is increasing interest and research on the interpretability of machine learning models, for example how they transform and internally represent EEG signals in Brain-Computer Interface (BCI) applications. This can help to understand the limits of the model and how it may be improved, in addition to possibly provide insight about the data itself. Schirrmeister et al. (2017) have recently reported promising results for EEG decoding with deep convolutional neural networks (ConvNets) trained in an end-to-end manner and, with a causal visualization approach, showed that they learn to use spectral amplitude changes in the input. In this study, we investigate how ConvNets represent spectral features through the sequence of intermediate stages of the network. We show higher sensitivity to EEG phase features at earlier stages and higher sensitivity to EEG amplitude features at later stages. Intriguingly, we observed a specialization of individual stages of the network to the classical EEG frequency bands alpha, beta, and high gamma. Furthermore, we find first evidence that particularly in the last convolutional layer, the network learns to detect more complex oscillatory patterns beyond spectral phase and amplitude, reminiscent of the representation of complex visual features in later layers of ConvNets in computer vision tasks. Our findings thus provide insights into how ConvNets hierarchically represent spectral EEG features in their intermediate layers and suggest that ConvNets can exploit and might help to better understand the compositional structure of EEG time series.Comment: 6 pages, 7 figures, The 6th International Winter Conference on Brain-Computer Interfac

    Object Classification using Ensemble of Local and Deep Features

    Full text link
    In this paper we propose an ensemble of local and deep features for object classification. We also compare and contrast effectiveness of feature representation capability of various layers of convolutional neural network. We demonstrate with extensive experiments for object classification that the representation capability of features from deep networks can be complemented with information captured from local features. We also find out that features from various deep convolutional networks encode distinctive characteristic information. We establish that, as opposed to conventional practice, intermediate layers of deep networks can augment the classification capabilities of features obtained from fully connected layers.Comment: Accepted for publication at Ninth International Conference on Advances in Pattern Recognitio

    Mapping Auto-context Decision Forests to Deep ConvNets for Semantic Segmentation

    Full text link
    We consider the task of pixel-wise semantic segmentation given a small set of labeled training images. Among two of the most popular techniques to address this task are Decision Forests (DF) and Neural Networks (NN). In this work, we explore the relationship between two special forms of these techniques: stacked DFs (namely Auto-context) and deep Convolutional Neural Networks (ConvNet). Our main contribution is to show that Auto-context can be mapped to a deep ConvNet with novel architecture, and thereby trained end-to-end. This mapping can be used as an initialization of a deep ConvNet, enabling training even in the face of very limited amounts of training data. We also demonstrate an approximate mapping back from the refined ConvNet to a second stacked DF, with improved performance over the original. We experimentally verify that these mappings outperform stacked DFs for two different applications in computer vision and biology: Kinect-based body part labeling from depth images, and somite segmentation in microscopy images of developing zebrafish. Finally, we revisit the core mapping from a Decision Tree (DT) to a NN, and show that it is also possible to map a fuzzy DT, with sigmoidal split decisions, to a NN. This addresses multiple limitations of the previous mapping, and yields new insights into the popular Rectified Linear Unit (ReLU), and more recently proposed concatenated ReLU (CReLU), activation functions

    An In-Depth Analysis of Visual Tracking with Siamese Neural Networks

    Full text link
    This survey presents a deep analysis of the learning and inference capabilities in nine popular trackers. It is neither intended to study the whole literature nor is it an attempt to review all kinds of neural networks proposed for visual tracking. We focus instead on Siamese neural networks which are a promising starting point for studying the challenging problem of tracking. These networks integrate efficiently feature learning and the temporal matching and have so far shown state-of-the-art performance. In particular, the branches of Siamese networks, their layers connecting these branches, specific aspects of training and the embedding of these networks into the tracker are highlighted. Quantitative results from existing papers are compared with the conclusion that the current evaluation methodology shows problems with the reproducibility and the comparability of results. The paper proposes a novel Lisp-like formalism for a better comparison of trackers. This assumes a certain functional design and functional decomposition of trackers. The paper tries to give foundation for tracker design by a formulation of the problem based on the theory of machine learning and by the interpretation of a tracker as a decision function. The work concludes with promising lines of research and suggests future work.Comment: submitted to IEEE TPAM
    • …
    corecore