7,176 research outputs found

    An Introduction to Wishart Matrix Moments

    Full text link
    These lecture notes provide a comprehensive, self-contained introduction to the analysis of Wishart matrix moments. This study may act as an introduction to some particular aspects of random matrix theory, or as a self-contained exposition of Wishart matrix moments. Random matrix theory plays a central role in statistical physics, computational mathematics and engineering sciences, including data assimilation, signal processing, combinatorial optimization, compressed sensing, econometrics and mathematical finance, among numerous others. The mathematical foundations of the theory of random matrices lies at the intersection of combinatorics, non-commutative algebra, geometry, multivariate functional and spectral analysis, and of course statistics and probability theory. As a result, most of the classical topics in random matrix theory are technical, and mathematically difficult to penetrate for non-experts and regular users and practitioners. The technical aim of these notes is to review and extend some important results in random matrix theory in the specific context of real random Wishart matrices. This special class of Gaussian-type sample covariance matrix plays an important role in multivariate analysis and in statistical theory. We derive non-asymptotic formulae for the full matrix moments of real valued Wishart random matrices. As a corollary, we derive and extend a number of spectral and trace-type results for the case of non-isotropic Wishart random matrices. We also derive the full matrix moment analogues of some classic spectral and trace-type moment results. For example, we derive semi-circle and Marchencko-Pastur-type laws in the non-isotropic and full matrix cases. Laplace matrix transforms and matrix moment estimates are also studied, along with new spectral and trace concentration-type inequalities

    Polynomial tuning of multiparametric combinatorial samplers

    Full text link
    Boltzmann samplers and the recursive method are prominent algorithmic frameworks for the approximate-size and exact-size random generation of large combinatorial structures, such as maps, tilings, RNA sequences or various tree-like structures. In their multiparametric variants, these samplers allow to control the profile of expected values corresponding to multiple combinatorial parameters. One can control, for instance, the number of leaves, profile of node degrees in trees or the number of certain subpatterns in strings. However, such a flexible control requires an additional non-trivial tuning procedure. In this paper, we propose an efficient polynomial-time, with respect to the number of tuned parameters, tuning algorithm based on convex optimisation techniques. Finally, we illustrate the efficiency of our approach using several applications of rational, algebraic and P\'olya structures including polyomino tilings with prescribed tile frequencies, planar trees with a given specific node degree distribution, and weighted partitions.Comment: Extended abstract, accepted to ANALCO2018. 20 pages, 6 figures, colours. Implementation and examples are available at [1] https://github.com/maciej-bendkowski/boltzmann-brain [2] https://github.com/maciej-bendkowski/multiparametric-combinatorial-sampler

    The Cyclohedron Test for Finding Periodic Genes in Time Course Expression Studies

    Get PDF
    The problem of finding periodically expressed genes from time course microarray experiments is at the center of numerous efforts to identify the molecular components of biological clocks. We present a new approach to this problem based on the cyclohedron test, which is a rank test inspired by recent advances in algebraic combinatorics. The test has the advantage of being robust to measurement errors, and can be used to ascertain the significance of top-ranked genes. We apply the test to recently published measurements of gene expression during mouse somitogenesis and find 32 genes that collectively are significant. Among these are previously identified periodic genes involved in the Notch/FGF and Wnt signaling pathways, as well as novel candidate genes that may play a role in regulating the segmentation clock. These results confirm that there are an abundance of exceptionally periodic genes expressed during somitogenesis. The emphasis of this paper is on the statistics and combinatorics that underlie the cyclohedron test and its implementation within a multiple testing framework.Comment: Revision consists of reorganization and further statistical discussion; 19 pages, 4 figure

    A note on Talagrand's variance bound in terms of influences

    Full text link
    Let X_1,..., X_n be independent Bernoulli random variables and ff a function on {0,1}^n. In the well-known paper (Talagrand1994) Talagrand gave an upper bound for the variance of f in terms of the individual influences of the X_i's. This bound turned out to be very useful, for instance in percolation theory and related fields. In many situations a similar bound was needed for random variables taking more than two values. Generalizations of this type have indeed been obtained in the literature (see e.g. (Cordero-Erausquin2011), but the proofs are quite different from that in (Talagrand1994). This might raise the impression that Talagrand's original method is not sufficiently robust to obtain such generalizations. However, our paper gives an almost self-contained proof of the above mentioned generalization, by modifying step-by-step Talagrand's original proof.Comment: 10 page

    An introduction to Wishart matrix moments

    Full text link
    © 2018 Now Publishers Inc. All rights reserved. These lecture notes provide a comprehensive, self-contained introduction to the analysis of Wishart matrix moments. This study may act as an introduction to some particular aspects of random matrix theory, or as a self-contained exposition of Wishart matrix moments. Random matrix theory plays a central role in statistical physics, computational mathematics and engineering sciences, including data assimilation, signal processing, combinatorial optimization, compressed sensing, econometrics and mathematical finance, among numerous others. The mathematical foundations of the theory of random matrices lies at the intersection of combinatorics, non-commutative algebra, geometry, multivariate functional and spectral analysis, and of course statistics and probability theory. As a result, most of the classical topics in random matrix theory are technical, and mathematically difficult to penetrate for non-experts and regular users and practitioners. The technical aim of these notes is to review and extend some important results in random matrix theory in the specific context of real random Wishart matrices. This special class of Gaussian-type sample covariance matrix plays an important role in multivariate analysis and in statistical theory.We derive non-asymptotic formulae for the full matrix moments of real valued Wishart random matrices. As a corollary, we derive and extend a number of spectral and trace-type results for the case of non-isotropic Wishart random matrices. We also derive the full matrix moment analogues of some classic spectral and trace-type moment results. For example, we derive semi-circle and Marchencko-Pastur-type laws in the non-isotropic and full matrix cases. Laplace matrix transforms and matrix moment estimates are also studied, along with new spectral and trace concentration-type inequalities

    Integer cells in convex sets

    Get PDF
    Every convex body K in R^n has a coordinate projection PK that contains at least vol(0.1 K) cells of the integer lattice PZ^n, provided this volume is at least one. Our proof of this counterpart of Minkowski's theorem is based on an extension of the combinatorial density theorem of Sauer, Shelah and Vapnik-Chervonenkis to Z^n. This leads to a new approach to sections of convex bodies. In particular, fundamental results of the asymptotic convex geometry such as the Volume Ratio Theorem and Milman's duality of the diameters admit natural versions for coordinate sections.Comment: Historical remarks on the notion of the combinatorial dimension are added. This is a published version in Advances in Mathematic
    corecore